共查询到20条相似文献,搜索用时 15 毫秒
1.
With a simple and physically intuitive method, first-principles calculations of potential-energy surfaces are performed for excited states in a number of illustrative systems, including dimers (H(2) and NaCl) and gas-surface systems [Cl-Na(100) and Cl(2)-Na(100)]. It is based on density-functional theory and is a generalization of the Delta self-consistent field (DeltaSCF) method, where electron-hole pairs are introduced in order to model excited states, corresponding to internal electron transfers in the considered system. The desired excitations are identified by analysis of calculated electron orbitals, local densities of states, and charge densities. For extended systems, where reliable first-principles methods to account for electronically excited states have so far been scarce, our method is very promising. Calculated results, such as the chemiluminescence of halogen molecules impinging on a alkali-metal surface, and the vertical (5 sigma-->2 pi(*)) excitation within the adsorbed CO molecule on the Pd(111) surface, are in working agreement with those of other studies and experiments. 相似文献
2.
Takayuki Shoda Takeshi Noro Tsutomu Nomura Kimio Ohno 《International journal of quantum chemistry》1986,30(2):289-302
2,4-pentadienal and 2,4,6,8-nonatetraenal were studied as simple model systems of retinal. Four kinds of CI were performed on low-lying excited states of 2,4-pentadienal by using a split valence basis set. The results show that MR SD π CI is not adequate for the π–π* state and the single excitation σπ CI is a good compromise between cost and effectiveness as far as singly excited states are concerned. This CI was applied to the bigger model system. All-trans and 11-cis forms of aldehyde, Schiff base, and protonated Schiff base of the model system were studied. A fairly large energy lowering of about 1 eV of the first allowed excited state (π → π*) occurs when the Schiff base is protonated for both all-trans and 11-cis forms. 相似文献
3.
The constrained variational Hartree-Fock method for excited states of the same symmetry as the ground state [Chem. Phys. Lett. 287, 189 (1998)] is combined with the effective local potential (ELP) method [J. Chem. Phys. 125, 081104 (2006)] to generate Kohn-Sham-type exact-exchange potentials for singly excited states of many-electron systems. Illustrative examples include the three lowest (2)S states of the Li and Na atoms and the three lowest (3)S states of He and Be. For the systems studied, excited-state ELPs differ from the corresponding ground-state potentials in two respects: They are less negative and have small additional "bumps" in the outer electron region. The technique is general and can be used to approximate excited-state exchange-correlation potentials for other orbital-dependent functionals. 相似文献
4.
Highly correlated coupled cluster methods with single and double excitations (CSSD) and CCSD with perturbative triple excitations were used to predict molecular structures and harmonic vibrational frequencies for the electronic ground state X 1Sigma+, and for the 3Delta, 3Sigma+, 3Phi, 1 3Pi, 2 3Pi, 1Sigma+, 1Delta, and 1Pi excited states of NiCO. The X 1Sigma+ ground state's geometry is for the first time compared with the recently determined experimental structure. The adiabatic excitation energies, vertical excitation energies, and dissociation energies of these excited states are predicted. The importance of pi and sigma bonding for the Ni-C bond is discussed based on the structures of excited states. 相似文献
5.
6.
Time-resolved experiments are reported Showing kinetic evidence for vibrational relaxation of electronically excited molecules in solution at room temperature. The experiments involve higher electronic states of 3,4,9,10-dibenzpyrene. Data are consistent with slow vibrational relaxation (≈ 15 ps), similar to that for ground state species. 相似文献
7.
Renato Colle Raffaele Montagnani Pierluigi Riani Oriano Salvetti 《Theoretical chemistry accounts》1978,49(1):37-44
The optimized MO's of several excited states of formaldehyde have been calculated by means of a large basis set of modified Gaussian functions; particular attention has been paid to the * transition. The total energy of the various states has been obtained as the sum of the SCF and correlation energies; the last one has been calculated as a functional of the electronic density. The calculated values for the transition energies are in good agreement with the experiment. A strong interaction of the * state with the continuum is evidentiated; this fact can justify the absence of the * band in the absorption spectrum. 相似文献
8.
Tae-Kyu Ha 《Chemical physics letters》1978,57(1):64-70
An ab initio SCF and CI study has been carried out for the ground and electronically excited states of biacetyl (CH3COCOCH3). The second absorption band in the 4.40 eV region has been assigned to a 1Ag → 1Bg nπ* transition The character of the lower-lying states has been analyzed in terms of the CI wavefunctions. 相似文献
9.
The electron-phonon coupling constants [l(B1u(HOMO-->LUMO))] in the photoinduced excited electronic states in fluoroacenes are estimated and compared with those in the monoanions (l(LUMO)) and cations (l(HOMO)). The l(B1u(HOMO-->LUMO)) values are much larger than the l(LUMO) and l(HOMO) values in fluoroacenes. Furthermore, the Coulomb pseudopotential mu* values for the excited electronic states are estimated to be smaller than those for the monoanions and cations. The complete phase patterns difference between the highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular orbitals (LUMOs) is the main reason why the electron-phonon coupling constants and the mu* values are larger and smaller, respectively, in the photoinduced excited electronic states than in the monoanions and cations. The possible electron pairing and Bose-Einstein condensation in the excited electronic states of fluoroacenes are discussed. Because of larger electron-phonon coupling constants and smaller mu* values in the excited electronic states than in the charged states, the conditions under which the electron-electron interactions become attractive can be more easily realized, in principle, in the excited electronic states than in the charged states in fluoroacenes. The l(B1u(HOMO-->LUMO)) values hardly change by H-F substitution, even though the l(LUMO) and l(HOMO) values significantly increase by H-F substitution in acenes. Antibonding interactions between carbon and fluorine atoms in the HOMO and LUMO are the main reason why the l(B1u(HOMO-->LUMO)) values hardly change by H-F substitution in acenes. 相似文献
10.
The polarization of both nπ* absorption bands of glyoxal has been measured in a glass matrix of 2-methyltetrahydrofuran by the photoselection method. The second absorption band in the 30 000 cm?1 region has been assigned to a 1Ag → 1Bg nπ* transition. Its intensity is mainly induced by interaction with the solvent. An absorption band at about 43 000 cm?1 has been ascribed to a charge transfer transition in complexes of glyoxal and 2-MTHF. 相似文献
11.
Extensive configuration interaction calculations based on ab initio wavefunctions including diffuse basis functions are reported for all-trans-1,3,5-hexatriene. Using these results we have assigned the one-photon spectra of Gavin and Rice and the electron-impact spectra of Kuppermann, and we have confirmed the assignment of the two-photon spectra of El-Sayed. The valence 2 1Ag state is found to lie above the strongly allowed valence 1 1Bu state. 相似文献
12.
13.
The intermolecular interaction energy for binary systems in the ground and excited electronic states was partitioned into the Coulomb, exchange-repulsion, induction, dispersion and charge-transfer interaction terms by the perturbation expansion method. The various interaction terms were evaluated for the hydrogen bondings in (HF)2, (H2O)2, (CH3OH)2, (RCOOH)2, and HF·H2O in various geometrical configurations. It has been found that the Coulombic interaction plays a dominant role in the stability of these hydrogen bonded systems. The method was further applied to the HCOOH·H2O codimer in both the ground and excited singlet electronic states. The results were in accord with the well-known water solvent effects on the shifts of absorption spectral bands. 相似文献
14.
Electronic excited states, electronic absorption, and magnetic circular dichroism (MCD) spectra of free-base tetraazaporphyrin (TAP), phthalocyanine (Pc), naphthalocyanine (Nc), and anthracocyanine (Ac) were studied by quantum chemical calculations using the symmetry-adapted cluster-configuration interaction (SAC-CI) method. Not only optically allowed states including the Q- and B-bands but also optically forbidden states were calculated for transitions whose excitation energies were lower than 4.5 eV. The present SAC-CI calculations consistently assigned the absorption and MCD peaks as optically allowed π→π(?) excitations, although these calculations using double-zeta basis limit quantitative agreement and discussion. For Nc and Ac, excited states beyond the four-orbital model appeared in the low-energy region. The low-energy shifts of the Q-bands with the extension of molecular size were explained by the orbital energies. The splitting of the Q-bands decreases with extension of the molecular size. This feature was reproduced by the SAC-CI calculations but the configuration interaction with single excitations and time-dependent density functional theory calculations failed to reproduce this trend. Electron correlation in the excited states is important in reproducing this splitting of the Q-bands and in describing the energy difference between the B(2u) and B(3u) states of free-base porphyrins. 相似文献
15.
Femtosecond degenerate four-wave-mixing spectroscopy following an initial pump laser pulse was used to observe the wave packet dynamics in excited electronic states of gas phase iodine. The focus of the investigation was on the ion pair states belonging to the first tier dissociating into the two ions I-(1S) + I+(3P2). By a proper choice of the wavelengths of the initial pump and degenerate four-wave-mixing pulses, we were able to observe the vibrational dynamics of the B (3)Pi(u) (+) state of molecular iodine as well as the ion pair states accessible from there by a one-photon transition. The method proves to be a valuable tool for exploring higher lying states that cannot be directly accessed from the ground state due to selection rule exclusion or unfavorable Franck-Condon overlap. 相似文献
16.
17.
18.
Extensive configuration interaction calculations (up to 1532 spin eigenfunctions) have been carried out on ozone with both minimal and extended bases. Vertical and adiabatic excitation energies to 14 excited states are reported, including seven states with vertical excitation energies less than 4 eV. Our calculations indicate that in addition to the ground state there are four other states of ozone (3B2, 3A2, 1A2 and 3B1) bound with respect to dissociation to ground state O2 and O (by 0.4, 0.3, 0.1 and 0.0 eV, respectively). With such small bonding energies, the current results cannot be said to show definitively (except perhaps for 3B2) these four states to be bound with respect to O2 + O. However, the theoretical evidence is sufficiently strong as to warrant careful experimental studies. Such bound excited electronic states could play important roles in the chemistry of the upper atmosphere and in the chemistry of oxygen discharge systems. One (or more) of these states may be responsible for the short-lived intermediate (‘ozone precursor’) recently observed in oxygen radiolysis. 相似文献
19.
《Journal of computational chemistry》2017,38(23):2020-2029
Low‐lying excited states of planarly extended nanographenes are investigated using the long‐range corrected (LC) density functional theory (DFT) and the spin‐flip (SF) time‐dependent density functional theory (TDDFT) by exploring the long‐range exchange and double‐excitation correlation effects on the excitation energies, band gaps, and exciton binding energies. Optimizing the geometries of the nanographenes indicates that the long‐range exchange interaction significantly improves the C C bond lengths and amplify their bond length alternations with overall shortening the bond lengths. The calculated TDDFT excitation energies show that long‐range exchange interaction is crucial to provide accurate excitation energies of small nanographenes and dominate the exciton binding energies in the excited states of nanographenes. It is, however, also found that the present long‐range correction may cause the overestimation of the excitation energy for the infinitely wide graphene due to the discrepancy between the calculated band gaps and vertical ionization potential (IP) minus electron affinity (EA) values. Contrasting to the long‐range exchange effects, the SF‐TDDFT calculations show that the double‐excitation correlation effects are negligible in the low‐lying excitations of nanographenes, although this effect is large in the lowest excitation of benzene molecule. It is, therefore, concluded that long‐range exchange interactions should be incorporated in TDDFT calculations to quantitatively investigate the excited states of graphenes, although TDDFT using a present LC functional may provide a considerable excitation energy for the infinitely wide graphene mainly due to the discrepancy between the calculated band gaps and IP–EA values. © 2017 Wiley Periodicals, Inc. 相似文献
20.
Deb Shankar Roy Kankan Bhattacharyya Subhas C. Bera Mihir Chowdhury 《Chemical physics letters》1980,69(1):134-140
A time-resolved study of the emission from benzil and naphthyl in semi-solid glasses (e.g. alcoholic glass near the melting point) using a pulsed N2-laser as an excitation source is reported. The emission from the relaxed excited triplet shows a growth followed by a decay. This growth provides a convincing proof of geometrical relaxation occurring in the excited states of benzil and naphthyl. 相似文献