首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantum chemical calculations have been performed to study the hybridization effect in H(2)O-AuCH(2)CH(3), H(2)O-AuCHCH(2), and H(2)O-AuCCH dimers, and the cooperativity between the hydrogen bond and Au bonding in three trimers (T1, T2, and T3) composed of one AuCCH and two H(2)O molecules. With regard to the organic Au compounds, sp-hybridized AuCCH forms the strongest Au bonding, followed by sp(2) and then sp(3). The C-Au bond is elongated, and its elongation becomes larger with the increase of the s character in hybrid orbitals, whereas the corresponding stretch vibration displays a small blue shift. The positive cooperativity is present for the hydrogen bond and Au bonding in T1 and T2 trimers, whereas the negative cooperativity is found in T3 trimer. The results show that the hybridization effect and cooperative interaction in Au bonding are similar to those in hydrogen bonds. Additionally, an OH···Au hydrogen bond is suggested in T1 trimer.  相似文献   

2.
The bonding patterns between small neutral gold Au(3 < or = n < or = 7) and hydrogen fluoride (HF)(1 < or = m < or = 4) clusters are discussed using a high-level density functional approach. Two types of interactions, anchoring Au-F and F-H...Au, govern the complexation of these clusters. The F-H...Au interaction exhibits all the characteristics of nonconventional hydrogen bonding and plays a leading role in stabilizing the lowest-energy complexes. The anchor bonding mainly activates the conventional F-H...F hydrogen bonds within HF clusters and reinforces the nonconventional F-H...Au one. The strength of the F-H...Au bonding, formed between the terminal conventional proton donor group FH and an unanchored gold atom, depends on the coordination of the involved gold atom: the less it is coordinated, the stronger its nonconventional proton acceptor ability. The strongest F-H...Au bond is formed between a HF dimer and the singly coordinated gold atom of a T-shape Au4 cluster and is accompanied by a very large red shift (1023 cm(-1)) of the nu(F-H) stretch. Estimations of the energies of formation of the F-H...Au bonds for the entire series of the studied complexes are provided.  相似文献   

3.
Evidence is presented that there is a clear covalent component in the bonding of Au+ to Kr and Au+ to Xe, with some evidence that there may be such bonding between Au+ and Ar; for Au+ and Ne, there is no such evidence, and the bonding seems to be entirely physical. A model potential analysis shows that when all attractive inductive and dispersive terms out to R-8 are properly included in the Au+-Ne case, with an Ae(-bR) Born-Mayer repulsive term, essentially all the bonding in Au+-Ne can be rationalized by physical attraction alone. This is consistent with a natural bond order (NBO) analysis of the Au+-Ne ab initio wavefunctions, which shows the charge on Au+ to be very close to 1.0. In contrast, similar model potential and NBO analyses show quite clearly that physical interactions alone cannot account for the large bond energy values for the Au+-Kr and Au+-Xe complexes and are consistent with covalent contributions to the Au+-Kr and Au+-Xe interactions. Au+-Ar is seen to lie on the borderline between these two limits. In performing the model potential analyses, high-level ab initio calculations are employed [CCSD(T) energies, extrapolated to the complete basis set limit], to obtain reliable values of Re, De and omegae as input. A comparison of the gold-Xe bond distances in several solid-state Au(I, II and III) oxidation-state complex ions, containing "ligand" Xe atoms, prepared by Seppelt and co-workers, with that of the "free" Au+-Xe gas-phase ion is made, and a discussion of the trends is presented.  相似文献   

4.
Understanding the nature of the interaction between metal nanoparticles and biomolecules has been important in the development and design of sensors. In this paper, structural, electronic, and bonding properties of the neutral and anionic forms of glutathione tripeptide (GSH) complexes with a Au(3) cluster were studied using the DFT-B3LYP with 6-31+G**-LANL2DZ mixed basis set. Binding of glutathione with the gold cluster is governed by two different kinds of interactions: Au-X (X = N, O, and S) anchoring bond and Au···H-X nonconventional hydrogen bonding. The influence of the intramolecular hydrogen bonding of glutathione on the interaction of this peptide with the gold cluster has been investigated. To gain insight on the role of intramolecular hydrogen bonding on Au-GSH interaction, we compared interaction energies of Au-GSH complexes with those of cystein and glycine components. Our results demonstrated that, in spite of the ability of cystein to form highly stable metal-sulfide interaction, complexation behavior of glutathione is governed by its intramolecular backbone hydrogen bonding. The quantum theory of atom in molecule (QTAIM) and natural bond orbital analysis (NBO) have also been applied to interpret the nature of interactions in Au-GSH complexes. Finally, conformational flexibility of glutathione during complexation with the Au(3) cluster was investigated by means of monitoring Ramachandran angles.  相似文献   

5.
The change in the electronic structure of Au(n)- clusters induced by the exchange of an Au atom by hydrogen is studied using photoelectron spectroscopy. Au anion clusters react with one hydrogen atom but not with molecular hydrogen. The spectra of Au(n)- and Au(n-1)H- clusters show almost identical features for n > 2 suggesting that hydrogen behaves as a protonated species by contributing one electron to the valence pool of the Au(n)- cluster. This behavior is in sharp contrast to that of the commonly understood electronic structure of hydrogen in metals; namely, it attracts an electron from the conduction band of the metal and remains in an "anionic" form or forms covalent bonding. We discuss the influence of the unique electronic structure of H on the unusual catalytic behavior of Au clusters.  相似文献   

6.
7.
The gold-ammonia bonding patterns of the complexes which are formed between the ammonia clusters (NH(3))(1< or =n< or =3) and gold clusters of different sizes that range from one gold atom to the tri-, tetra-, and 20-nanogold clusters are governed by two basic and fundamentally different ingredients: the anchoring Au-N bond and the nonconventional N-H...Au hydrogen bond. The latter resembles, by all features, a conventional hydrogen bond and is formed between a typical conventional proton donor N-H group and the gold cluster that behaves as a nonconventional proton acceptor. We provide strong computational evidence that the gold-ammonia bonding patterns exhibit distinct characteristics as the Z charge state of the gold cluster varies within Z=0,+/-1. The analysis of these bonding patterns and their effects on the N-H...N H-bonded ammonia clusters are the subject of this paper.  相似文献   

8.
9.
It has been demonstrated that intermolecular interaction,crucial in a plenty of chemical and physical processes,may vary in the presence of metal surface.However,such modification is yet to be quantitatively revealed.Here,we present a systematical density functional theory study on adsorbed bis(para-pyridyl)acetylene(BPPA)tetramer on Au(111)surface.We observed unusually high electron density between two head-to-head N atoms,an intermolecular "non-bonded" region,in adsorbed BPPA tetramer.This exceptional electron density originates from the wavefunction hybridization of the two compressed N lone-electron-pair states of two BPPA,as squeezed by a newly revealed N-Au-N three-center bonding.This bond,together with the minor contribution from N H-C intermolecular hydrogen bonding,shortens the N-N distance from over 4 Å to 3.30 Å and offers an attractive lateral interacting energy of 0.60 eV,effectively to a surface-confined in-plane pressure.The overlapped non-bonding wavefunction hybridization arising from the effective pressure induced by the N-Au-N three-center bonding,as not been fully recognized in earlier studies,was manifested in non-contact Atomic Force Microscopy.  相似文献   

10.
The structural evolution of Au(n) (n=2, 3, 5, 7, 9, and 13) clusters and the adsorption of organic molecules such as acetone, acetaldehyde, and diethyl ketone on these clusters are studied using a density functional method. The detailed study of the adsorption of acetone on the Au(n) clusters reveals two main points. (1) The acetone molecule interacts with one gold atom of the gold clusters via the carbonyl oxygen. (2) This interaction is mediated through back donation mainly from the spd-hybridized orbitals of the interacting gold atom to the oxygen atom of the acetone molecule. In addition, a hydrogen bond is observed between a hydrogen atom of the methyl group and another gold atom (not involved in the bonding with carbonyl oxygen). Interestingly, the authors notice that the geometries of Au(9) and Au(13) undergo a significant flattening due to the adsorption of an acetone molecule. They have also investigated the role of the alkyl chain attached to the carbonyl group in the adsorption process by analyzing the interaction of Au(13) with acetaldehyde and diethyl ketone.  相似文献   

11.
FT-IR and Raman spectra of the nonlinear optical material l-Valine Hydrobromide crystal have been recorded and analyzed. The equilibrium geometry, bonding features and the harmonic vibrational wavenumbers of LVB have been calculated with the help of density functional theory (DFT) calculation. The lowering of NH stretching wavenumber indicates the formation of NH?Br hydrogen bonding. The calculated First order hyperpolarizability value shows that LVB is the potential candidate for the NLO applications. The electronic effects and the hydrogen bonding were explained using natural bond orbital analysis.  相似文献   

12.
Ping Du 《Tetrahedron letters》2009,50(3):320-15304
The capacity of sulfur to form intramolecular five- or six-membered S?H-N hydrogen bonding in aromatic amides is assessed. The five-membered S?H-N hydrogen bonding is observed in crystal structures of five compounds, whereas the six-membered S?H-N hydrogen bonding is revealed in crystal structures of three compounds. The trityl group has been used to promote formation of the weak hydrogen bonding because it efficiently inhibits the competition of the intermolecular CO?H-N hydrogen bonding. (2D) 1H NMR experiments indicate that both patterns also exist in chloroform.  相似文献   

13.
Binding of gold and silver clusters with amino acids (glycine and cysteine) was studied using density functional theory (DFT). Geometries of neutral, anionic, and cationic amino acids with Au3 and Ag3 clusters were optimized using the DFT-B3LYP approach. The mixed basis set used here was denoted by 6-31+G** (union or logical sum)LANL2DZ. This work demonstrated that the interaction of amino acids with gold and silver clusters is governed by two major bonding factors: (a) the anchoring N-Au(Ag), O-Au(Ag), and S-Au(Ag) bonds and (b) the nonconventional N-H...Au(Ag) and O-H...Au(Ag) hydrogen bonds. Among the three forms of amino acids, anionic ones exhibited the most tendency to interact with the Au and Ag clusters. Natural bond orbital analysis was performed to calculate charge transfer, natural population analysis, and Wiberg bond indices of the complexes. Atoms-in-molecules theory was also applied to determine the nature of interactions. It was shown that these bonds are partially electrostatic and partially covalent.  相似文献   

14.
Structural rigidity and the preorganization of thread binding sites are shown to have a major influence on template efficiency in the synthesis of hydrogen bond-assembled rotaxanes. Preorganization is so effective, in fact, that with good hydrogen bond acceptors (amides) a "world record" yield of 97% for a [2]rotaxane is obtained. The truly remarkable feature of this efficient template, however, is that it allows even poor hydrogen bond acceptors (esters) to be used to prepare hydrogen bond-assembled rotaxanes, despite the presence of competing hydrogen bonding groups (anions) which bind the key intermediates at least 10000x more strongly than single, unorganized, ester groups! The structures of the rotaxanes are established unambiguously in solution by (1)H NMR spectroscopy and in the solid state by X-ray crystallography. As a series they provide unique experimental information regarding the nature of amide-ester hydrogen bonding interactions; in particular they suggest that in CDCl(3), amide-ester NH...O=C hydrogen bonds are approximately 1 kcal mol(-)(1) weaker than the corresponding amide-amide interactions.  相似文献   

15.
Dicarba-closo-dodecaborane(12) (carborane) has recently received much attention as a building block for supramolecular assemblies and bioactive compounds. Among carborane isomers, 1,2-dicarba-closo-dodecaborane(12) (o-carborane) has unique chemical properties, including the ability of the o-carborane C-H hydrogens to form hydrogen bonds. To evaluate intramolecular hydrogen bond formation between the o-carborane C-H hydrogen and various hydrogen bond acceptors in solution, we have designed and synthesized 1-aryl-o-carboranes 2. Intramolecular hydrogen bonding ability was evaluated by means of 1H NMR measurement of the o-carborane C-H hydrogen signal of 2. The 1-(2-methoxyphenyl)-o-carborane derivative 2m appeared to form an intramolecular hydrogen bond between o-carborane C-H hydrogen and the oxygen atom acting as a hydrogen bonding acceptor. In this study, we present evidence for hydrogen bond formation in solution between the o-carborane C-H and hydrogen bond acceptors positioned with appropriate geometry.  相似文献   

16.
Ping Du 《Tetrahedron letters》2009,50(3):316-1596
This Letter reports the evidences for intramolecular six-membered N-H···O hydrogen bonding in N-benzyl benzamides and five-membered N-H···N hydrogen bonding in N-(pyridin-2-ylmethyl) benzamide. Intramolecular six-membered N-H···X (X = O or F) hydrogen bonding in 2-methoxyl- or 2-fluorobenzamides is used to lock the amide proton from forming strong intermolecular N-H···OC hydrogen bonding. As a result, for the first time the new intramolecular hydrogen bonding patterns are observed in the crystal structures of nine amides, whereas the whole molecules give rise to a new class of three-center hydrogen bonding motif. 1H NMR study in chloroform-d also supports that this weak intramolecular hydrogen bonding pattern exists in solution.  相似文献   

17.
Hydrogen bonding in crystalline 3,5-pyridine dicarboxylic acid has been studied by (2)H, (14)N, and (17)O nuclear quadrupole resonance. The (2)H and (17)O data show the presence of two distinct hydrogen bonds, a "normal" O-H···O bond and a short, strong N···H···O bond, with significantly different NQR parameters. In the latter, the temperature variation of the (14)N nuclear quadrupole resonance (NQR) parameters is related to the phonon-driven proton transfer in the N···H···O hydrogen bond. The temperature dependence of the N···H and H···O distances in the N···H···O hydrogen bond is extracted from the (14)N NQR data.  相似文献   

18.
19.
The self‐assembly of cyano‐functionalized triarylamine derivatives on Cu(111), Ag(111) and Au(111) was studied by means of scanning tunnelling microscopy, low‐energy electron diffraction, X‐ray photoelectron spectroscopy and density functional theory calculations. Different bonding motifs, such as antiparallel dipolar coupling, hydrogen bonding and metal coordination, were observed. Whereas on Ag(111) only one hexagonally close‐packed pattern stabilized by hydrogen bonding is observed, on Au(111) two different partially porous phases are present at submonolayer coverage, stabilized by dipolar coupling, hydrogen bonding and metal coordination. In contrast to the self‐assembly on Ag(111) and Au(111), for which large islands are formed, on Cu(111), only small patches of hexagonally close‐packed networks stabilized by metal coordination and areas of disordered molecules are found. The significant variety in the molecular self‐assembly of the cyano‐functionalized triarylamine derivatives on these coinage metal surfaces is explained by differences in molecular mobility and the subtle interplay between intermolecular and molecule–substrate interactions.  相似文献   

20.
The block-localized wave function (BLW) method, which is the simplest variant of ab initio valence bond (VB) theory, together with the quantum theory of atoms in molecules (QTAIM) approach, have been used to probe the intramolecular hydrogen bonding interactions in a series of representative systems of resonance-assisted hydrogen bonds (RAHBs). RAHB is characteristic of the cooperativity between the π-electron delocalization and hydrogen bonding interactions and is identified in many biological systems. While the deactivation of the π resonance in these RAHB systems by the use of the BLW method is expected to considerably weaken the hydrogen bonding strength, little change on the topological properties of electron densities at hydrogen bond critical points (HBCPs) is observed. This raises a question of whether the QTAIM topological parameters can be an effective measure of hydrogen bond strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号