首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Negatively charged supramolecular aggregates formed in vacuo by n bis(2-ethylhexyl)sulfosuccinate (AOT) anions and n + n c sodium counterions (i.e., [AOT n Na n+nc ] nc ) have been investigated by molecular dynamics (MD) simulations for n = 1 to 20 and n c = –1 to –5. By comparing the maximum excess charge values of negatively and positively charged AOTNa aggregates, it is found that the charge storage capability is higher for the latter systems, the difference decreasing as the aggregation number increases. Statistical analysis of physical properties like gyration radii and moment of inertia tensors of aggregates provides detailed information on their structural properties. Even for n c = –5, all stable aggregates show a reverse micelle-like structure with an internal core, including sodium counterions and surfactant polar heads, surrounded by an external layer consisting of the surfactant alkyl chains. Interestingly, the reverse micelle-like structure is retained also in proximity of fragmentation. Moreover, the aggregate shapes may be approximated by elongated ellipsoids whose longer axis increases with n and |n c |. The fragmentation patterns of a number of these aggregates have also been examined and have been found to markedly depend on the aggregate charge state. The simulated fragmentation patterns of a representative aggregate show good agreement with experimental data obtained using low collision voltages. Figure
?  相似文献   

2.
All-atom molecular dynamics simulation results regarding aqueous sodium dodecyl sulfate (SDS) solutions have been presented. Both salt-free solutions with different SDS concentrations and those containing calcium chloride additives have been studied. The simulation has shown that surface-active SDS ions form stable premicellar aggregates. The obtained molecular dynamics trajectories have been used to describe both the kinetic and structural properties of solutions containing SDS molecular aggregates and the properties of individual aggregates. Aggregation kinetics has been investigated, and the characteristic sizes of the aggregates have been calculated by different methods. It has been found that the size of a premicellar aggregate with aggregation number n = 16 in a salt-free solution virtually does not depend on surfactant concentration. Radial distribution functions (RDFs) of hydrogen and oxygen atoms of water molecules relative to the center of mass of an aggregate have no local maxima near the aggregate surface; i.e., the surface is incompletely wetted with water. Corresponding RDFs of carbon atoms have one, two or three maxima depending on the surfactant concentration and the serial number of a carbon atom in the hydrocarbon radical of the surface- active ion. The study of the potentials of mean force for the interaction of sodium and calcium ions with an aggregate having aggregation number n = 32 shows that only calcium ions can be strongly bound to such an aggregate.  相似文献   

3.
A novel fluorescent gemini surfactant, 1,4-bis-(2'-(N-dodecyl pyridinio-4"-yl)ethenyl)benzene dibromide, abbreviated BDPEBB, has been synthesized and its photophysical properties have been studied in different environments. BDPEBB has a limited solubility in alcohols where it is found in aggregate form at concentrations>/=1 mM. In other solvents, e.g., water, it is only found in aggregate form, even at much lower concentrations. Solvent polarity has a small and insignificant solvatochromic effect but alcohols give a specific interaction with BDPEBB, causing a significant hypsochromic shift in absorption maxima and a large increase in relative fluorescence efficiency. Pyrene fluorescence is effectively quenched by BDPEBB. Pyrene also forms associative complexes with BDPEBB in water. These complexes are partly dissociated in the presence of surfactant micelles. Triton X-100 micelles provide a favorable environment for BDPEBB solubilization well distinguished from the behavior of ionic surfactants. Small quantities of BDPEBB have a large influence on the behavior of aqueous sodium dodecylsulfate (SDS) and sodium decylsulfate (SDeS) micelles, inducing the formation of large aggregates, visible by the naked eye. These large aggregates are most probably microcrystals of BDPEBB(2+)/2DS(-) or BDPEBB(2+)/2DeS(-). The aggregation number of SDS and SDeS micelles in the absence and in the presence of BDPEBB has been calculated by exploitation of the static luminescence quenching kinetics of Ru(bpy)(3)(2+) by 9-methylanthracene, both solubilized in the micellar phase. It has been observed that Ru(bpy)(3)(2+) inhibits the precipitation of SDeS micelles in the presence of BDPEBB. Our results suggest that double-chain surfactant chromophores should be employed with particular care if they are to be used as probes of the micellar phase. Copyright 2000 Academic Press.  相似文献   

4.
The structure of aggregates formed by eight surfactant [Ru(bipy)2(p,p'-dialkyl-2,2'-bipy)]Cl2 complexes-which we express as Ru(p)(q)Cn, where n (=12 or 19) is the alkyl chain length, p (=4 or 5) refers to the substitution position on the bipyridine ligand, and q (=1 or 2) is the number of substituted alkyl chains-in aqueous solutions has been examined using small-angle neutron scattering for a range of concentrations close to the critical micelle concentration and for several combinations of n, p, and q. A number of general results emerge. The double-chain surfactants possess a smaller headgroup charge but a larger aggregate size than their single-chain analogues. Over the concentration range studied, the micelles of the single-chain surfactants grow as the concentration is increased, whereas for the double-chain systems, the aggregate size remains unchanged. For both single- and double-chain surfactants, an increase in alkyl chain length is accompanied by an expected increase in aggregate size and an increase in average headgroup charge. The aggregates formed in solutions of resolved double-chain complexes are larger than those found in solutions of racemic mixtures. The Ru(4)(1)C12 and Ru(5)(1)C12 systems form aggregates with high water content. Variation of the substitution position for the single-chain surfactants produces dramatic changes in the structure of the micelles. The aggregates formed in solutions of Ru(4)(1)C19 and Ru(5)(1)C19 display particularly different structures. The Ru(4)(1)C19 system forms essentially spherical aggregates. In contrast, in the Ru(5)(1)C19 system, wormlike aggregates are formed in which the rigid rodlike sections appear to undergo a transition from a noninterdigitated to an interdigitated structure as the concentration is increased. For double-chain surfactants, the aggregation number for p = 4 surfactants is considerably larger than that for p = 5 surfactants.  相似文献   

5.
The size and shape of novel partially fluorinated gemini surfactant 1,2-bis[dimethyl-(3-perfluoroalkyl-2-hydroxypropyl)ammonium]ethane bromide (CnFC3-2-C3CnF, where n=4, 6, and 8) were investigated in aqueous solution by means of light scattering and transmission electron microscopy (TEM). The sizes of these molecular aggregates changed with increasing carbon number of the alkyl chain and concentration. For example, the apparent hydrodynamic radius by dynamic light scattering was 18 nm at a concentration of cmcx5 for n=4, 115 nm at the cmcx15 for n=6, and 62 nm at the cmcx30 for n=8, at 298.2 K. The shapes of CnFC3-2-C3CnF aggregates drastically changed with the alkyl chain length; the aggregates were mainly in the form of large or irregular small aggregates (n=4), string-like aggregates (n=6), and vesicles (n=8). The bromide-ion activity was measured using a bromide-ion-selective electrode to determine the degree of counterion binding to the aggregates. The degree of counterion binding to aggregate was very small compared with that in the typical hydrogenated gemini surfactants. These results indicated that the small curvature of large aggregates was not influenced by an electrostatic repulsion between the cationic head groups in the case of the bulky molecular volume of fluorinated gemini surfactants.  相似文献   

6.
用表面张力 (γ)法研究了非电解质聚合物聚乙烯吡咯烷酮 (PVP)或聚乙二醇 (PEG)与烷基硫酸纳同系物中十四烷基硫酸钠 (SMS)、十二烷基硫酸钠 (SDS)及十烷基硫酸钠 (SDeS)间团簇化临界浓度的变化规律 .上述软物质团簇的γ lgc曲线均具有双拐点即拟双平台特征 ,表明在双拐点之间非电解质聚合物与烷基硫酸钠形成软物质团簇 .对应于双拐点有两个表面活性剂临界浓度值c1 和c2 ,且符合c1 相似文献   

7.
Phenomenon of clouding in charged micellar solutions is a fairly recent addition to conventional phenomenon shown by aqueous nonionic micelles. In this paper, we have tested a Hofmeister-like ordering of charged headgroups in the context of cloud point (CP) and micellar growth. For this purpose, we have used various combinations of surfactant (sodium dodecyl sulfate, SDS; sodium dodecylbenzene sulfonate, SDBS; sodium salts of α-sulfonato myristic acid methyl ester, MES; and α-sulfonato palmitic acid methyl ester, PES) and tetra-n-butylammonium bromide (TBAB). Different surfactant concentrations and TBAB concentrations are used and CP measurements have been performed. CP values were found in the order SDBS?<?SDS?<?PES?<?MES for the same concentration of surfactant and TBAB. This order has been discussed in the light of water affinities of interacting ionic species (i.e., surfactant headgroup and TBA+ counterion). The ordering was found similar for the case of micellar growth studied by dynamic light scattering (DLS). A bimodal distribution of aggregate size was found that transforms to giant aggregates at CP. The micelles of roughly 10-nm size convert to aggregates of 1 μm. The study has a few novelties: (1) headgroup dependence of CP, (2) micellar growth on heating, and (3) confirmation of Hofmeister-like series of headgroup.  相似文献   

8.
The molecular mechanism and thermodynamics of the interactions between plasmid DNA and cationic surfactants were investigated by isothermal titration calorimetry (ITC), dynamic light scattering, surface tension measurements, and UV spectroscopy. The cationic surfactants studied include benzyldimethyldodecylammonium chloride, benzyldimethyltetradecylammonium chloride, cetylpyridinium chloride, and cetyltrimethylammonium chloride. The results indicate a critical aggregation concentration (cac) of a surfactant: above the cac the surfactant forms aggregates with plasmid DNA; below the cac, however, there is no detectable interaction between DNA and surfactant. Surfactants with longer hydrocarbon chains have smaller cac, indicating that hydrophobic interaction plays a key role in DNA-surfactant complexation. Moreover, an increase in ionic strength (I) increases the cac but decreases the critical micellization concentration (cmc). These opposite effects lead to a critical ionic strength (I(c)) at which cac = cmc; when I < I(c), cac < cmc; when I > I(c), DNA does not form complexes with surfactant micelles. In the interaction DNA exhibits a pseudophase property as the cac is a constant over a wide range of DNA concentrations. ITC data showed that the reaction is solely driven by entropy because both deltaH(o) (approximately 2-6 kJ mol(-1)) and deltaS(o) (approximately 70-110 J K(-1) mol(-1)) have positive values. In the complex, the molar ratio of DNA phosphate to surfactant is in the range of 0.63-1.05. The reaction forms sub-micrometer-sized primary particles; those aggregate at high surfactant concentrations. Taken together, the results led to an inference that there is no interaction between surfactant monomers and DNA molecules and demonstrated that DNA-cationic surfactant interactions are mediated by the hydrophobic interactions of surfactant molecules and counterion binding of DNA phosphates to the cationic surfactant aggregates.  相似文献   

9.
Molecular dynamics simulations of sodium dodecyl sulfate (SDS) molecules on a graphite surface are presented. The simulations were conducted at low and high surface coverage to study aggregation at the water/graphite interface. Results showed that at low surface coverage, the SDS molecules form hemicylindrical aggregates, in agreement with AFM experiments, whereas at high surface coverage, the surfactants form full cylinders. The latter aggregates have not been reported in systems of SDS on hydrophobic substrates, such as graphite. The unexpected results are explained in terms of a water layer adsorbed at the solid surface which was the responsible for the formation of these aggregates. Moreover, the SDS tails in the full cylindrical configuration became straighter than those of the hemicylindrical aggregate. Hydrogen bond formation between water and surfactant head groups was also studied, and it was found that they did not depend on the surfactant concentration.  相似文献   

10.
Assembling and chelating properties of sodium bis(2-ethylhexyl)sulfosuccinate (AOTNa) towards divalent metal ions have been investigated in the gas phase by electrospray ionization mass spectrometry. A variety of positively charged monometallated and mixed metal aggregates are formed. Interestingly, several ions contain solvent (MeOH, H(2)O) molecules and constitute the most abundant AOT cationic aggregates not containing sodium. These species are the first example of solvated AOT-metal ion aggregates in the gas phase. By increasing the surfactant aggregation number, the abundance of solvated species becomes lower than that of unsolvated ones. Decompositions of ionic species have been studied by tandem mass spectrometry, and their stability has been determined through energy resolved mass spectrometry. In contrast with positively charged AOT-alkaline metal ion aggregates, whose decompositions are dominated by the loss of individual surfactant molecules, AOTNa-divalent ion aggregates mainly dissociate through the cleavage of the AOT H(2)C-O bond followed by further intramolecular fragmentations. This finding, that is consistent with an enhanced chelation of divalent ions with AOT(-) head groups, has been taken as an indication that such aggregates are characterized by a reverse micelle-like organization with a ionic core formed by the metal cations interacting with the negatively charged surfactant polar heads, whereas the surfactant alkyl chains point outside.  相似文献   

11.
Formation of aggregates in the binary systems of double-tailed surfactant, sodium 4-(1-pentylheptyl)benzenesulfonate, and water in the dilute regime was supposed to occur within 5.0–8.5% of surfactant concentration. The size of particles was determined by light scattering. In addition, the samples were observed at room temperature using an Axiovert 35 Zeiss polarized light microscope operated with differential interference contrast optics. The observed aggregates could, in theory, belong a vesicle phase. All the histograms obtained by light scattering showed a bimodal distribution of particles. Weight factors including intensity, volume and number distribution indicate 97–100% of small aggregate sizes, since the peaks for the big sizes indicate only a small number of the aggregate population. Small aggregates have shown monodispersity with diameters of the aqueous core amounting to 38.94 and 54.94 nm relating to the surfactant concentration of 6.0 and 8.0%, respectively. Hydrodynamic radii determined by the Cumulant method, by the inverse Laplace transformation, and using a plot 1/τ vs. q2, showed values within the usual precision limits.  相似文献   

12.
Studies of the aggregation behavior of cyclic gemini surfactants   总被引:1,自引:0,他引:1  
The specific conductance, surface tension, mean aggregation number, and apparent molar volume properties of aqueous solutions of a novel series of N,N'-bis(cyclododecyldimethyl)-alpha,omega-alkanediammonium dibromide (c12-s-c12) surfactants, where s is the spacer chain length, are reported. Surfactants with s = 3, 4, and 6 have been prepared and characterized in terms of their Krafft temperature (T(Kr)), critical micelle concentration (cmc), surfactant head group area (a) at the air-water interface, mean aggregation number (N(agg)), and the volume change upon micelle formation (deltaV(phi,M)). The c12-3-c12 shows little evidence of aggregate formation, while the results obtained for the c12-4-c12 and c12-6-c12 homologues suggest the formation of small, poorly defined micellar aggregates in aqueous solution.  相似文献   

13.
This paper reports on studies of the rheological properties of cationic starch (CS)/ surfactant systems. The degree of substitution of the CS was 0.1 - 0.8. Surfactants investigated were sodium dodecyl sulfate (SDS), potassium octanoate (KOct), sodium decanoate (NaDe)potassium dodecanoate (KDod), sodium oleate (NaOl) and sodium erucate (NaEr). Aggregation of surfactant micelles with the polymer produces a hydrophobic and pseudoplastic gel-like complex phase with low water content and high viscosity. The rheological behavior of the gels is described by the Herschel-Bulkley model. In dilute aqueous solution the CS/surfactant aggregate structure resembles a randomly coiled polymer network, in which polymer molecules are linked by micelles. The rheological data for the gel are compatible with the assumption that the surfactants form liquid crystalline structures with the polymer anchored to the surfactant aggregates, as recently suggested for analogous systems. However, this conjecture needs to be corroborated by more direct determinations of the structure.  相似文献   

14.
The temperature-versus-composition phase diagrams of eight different 1-alkylpyridinium octane-1-sulfonates (APOSs) in water were studied by 1H NMR, 2H NMR, pulsed gradient spin-echo NMR, small-angle X-ray diffraction, differential scanning calorimetry, surface tension and conductivity measurements, and polarizing microscopy. The number of carbons (n(c)) in the hydrocarbon chain of the pyridinium counterions was varied from n(c) = 1 to n(c) = 8 to study how the phase behavior of the APOS/2H2O systems was affected by a change in the chain length of the counterion. The sodium octane-1-sulfonate (NaOS)/water system was used as a reference. This system formed an isotropic micellar solution (L1) phase and a normal hexagonal (H(I)) phase. All APOSs were readily soluble in water and formed L1 phases. The surface tension above the critical micelle concentration for n(c) between 1 and 3 was higher than that for NaOS, and it decreased steadily for the different APOSs with increasing chain length. The area per molecule at the air/solution interfaces was rather constant at 68 A2 for n(c) between 1 and 7. For 1-octylpyridinium octane-1-sulfonate (OPOS), it was about 5 A2 smaller, which was just outside the estimated error. However, the smallest area was obtained for NaOS. At higher surfactant concentrations, liquid crystalline phases formed. Both cubic and H(I) phases were found for n(c) = 1 and 2, while for n(c) between 3 and 5 only an H(I) phase was observed. H(I) and lamellar liquid crystalline (Lalpha) phases formed for n(c) = 6 and 7. The only liquid crystalline phase found in the OPOS system was a Lalpha phase. The NaOS H(I) phase was the only liquid crystalline phase that showed a linear relation between the 2H2O NMR quadrupolar splitting (deltaW) and Xsurf/X(W), where Xsurf and X(W) are the mole fractions of surfactant and water. The OPOS lamellae were found to be much thinner than expected, indicating a defect lamellar structure. This was further supported by the behavior of the quadrupolar splitting ofdeuterated OPOS. The anomalous behaviors of the 2H2O NMR quadrupolar splitting observed in the Lalpha phases of 1-heptylpyridinium octane-1-sulfonate and OPOS were interpreted in terms of changes in the population of the water molecules residing in different sites combined with a continuous rearrangement of the lamellae surface with the possible development of holes. The appearances of the phase diagrams were discussed in terms of surfactant molecular geometry and the packing of the amphiphiles in the aggregates formed.  相似文献   

15.
The aggregate states of partially fluorinated gemini surfactant [(CF3)2CF(CF2)2(CH2)10N(CH3)2]2(CH2)6Br2 (C(F)(5)C10-C6-C10C(F)(5)) on silica surface were investigated with atomic force microscopy (AFM) and water contact angle (CA) measurement by analyzing the effects of bulk concentration and adsorption time on stack state. On surfactant-adsorbed silica surfaces, there was a flat surface layer interspersed with some scattering surfactant aggregates. In the case of short adsorption times, the aggregates would be hemisphere. In the case of long adsorption times, the aggregates would be present in the form of bilayers. With the increase of bulk concentration, the adsorbed amount was enlarged and the surface layer became more compact. The formation of patchy bilayer aggregates indicated the saturation of the surface layer. Furthermore, organic solvent effects on the aggregate state of the surfactant on a silica surface were studied with four organic solvents, including n-hexane, dehydrated ethanol, 1,1,2-trichloro-1,2,2-trifluoroethane, and toluene. With the treatment of different organic solvents, the hemisphere aggregates on the surface layer can rearrange into spherical bilayer, rodlike monolayer, and branched rodlike monolayer aggregates, respectively. The polarity of solvents and affinity of organic solvents for surfactant molecules may have a great impact on the stack state of the fluorinated gemini surfactant molecules.  相似文献   

16.
The complex formation between sodium carboxymethylcellulose (NaCMC) and dodecyltrimethylammonium bromide (DTAB) at various sodium bromide concentrations (C(NaBr)) has been studied by microcalorimetry, turbidimetric titration, steady-state fluorescence measurements, and the fluorescence polarization technique. The addition of salt is found to influence the formation of NaCMC/DTAB complexes markedly. At C(NaBr) = 0.00, 0.01, 0.02, 0.10, and 0.20 M, DTAB monomers form micelle-like aggregates on NaCMC chains to form NaCMC/DTAB complexes above the critical surfactant concentration (C1). At C(NaBr) = 0.23 M, DTAB molecules first form micelles above a 2.46 mM DTAB concentration prompted by the added salt, and then, above C1 = 4.40 mM, these micelles can aggregate with NaCMC chains to form NaCMC/DTAB complexes. However, at C(NaBr) = 0.25 M, there is no NaCMC/DTAB complex formation because of the complete salt screening of the electrostatic attraction between DTAB micelles and NaCMC chains. It is also surprisingly found that the addition of NaBr can bring out a decrease in C1 at C(NaBr) < 0.20 M. Moreover, the addition of NaBr to a mixture of 0.01 g/L NaCMC and 3.6 mM DTAB can directly induce the formation of NaCMC/DTAB complexes. This salt-enhancing effect on the complex formation is explained as the result of competition between the screening of interaction of polyelectrolyte with surfactant and the increasing of polyelectrolyte/surfactant interaction owing to the growth of micelles by added salt. When the increasing of polyelectrolyte/surfactant interaction exceeds the screening of interaction, the complex formation can be enhanced.  相似文献   

17.
Three different chiroptical spectroscopic methods, namely, optical rotation, electronic circular dichroism (ECD), and vibrational circular dichroism (VCD) have been evaluated for studying the aggregation of sodium dodecylsulfate (SDS), an achiral surfactant, using garcinia acid disodium salt (GADNa) as a chiral probe. The specific rotation and ECD of GADNa are found to be altered by the aggregation of SDS, suggesting for the first time that achiral surfactants can be characterized with chiroptical spectroscopy using appropriate chiral probes. In addition, a chiral compound, fluorenyl methyloxy carbonyl l-leucine sodium salt (FLNa) is found for the first time to behave as a surfactant in water, with 205 ?(2) surface area per molecule at the air-water interface, critical micelle concentration (CMC) of 0.18 M, and Gibbs energy of micellization of -14 kJ/mol. The specific rotation of FLNa in water is found to increase with concentration beyond CMC, suggesting the formation of chiral aggregates. Different conformations of FLNa amenable to micellization have been identified using quantum chemical conformational analysis and their specific rotations calculated. The formation of lamellar aggregates of FLNa in water is suggested to be the cause for increase in specific rotation with concentration beyond CMC.  相似文献   

18.
General thermodynamic relations for the work of polydisperse micelle formation in the model of ideal solution of molecular aggregates in nonionic surfactant solution and the model of "dressed micelles" in ionic solution have been considered. In particular, the dependence of the aggregation work on the total concentration of nonionic surfactant has been analyzed. The analogous dependence for the work of formation of ionic aggregates has been examined with regard to existence of two variables of a state of an ionic aggregate, the aggregation numbers of surface active ions and counterions. To verify the thermodynamic models, the molecular dynamics simulations of micellization in nonionic and ionic surfactant solutions at two total surfactant concentrations have been performed. It was shown that for nonionic surfactants, even at relatively high total surfactant concentrations, the shape and behavior of the work of polydisperse micelle formation found within the model of the ideal solution at different total surfactant concentrations agrees fairly well with the numerical experiment. For ionic surfactant solutions, the numerical results indicate a strong screening of ionic aggregates by the bound counterions. This fact as well as independence of the coefficient in the law of mass action for ionic aggregates on total surfactant concentration and predictable behavior of the "waterfall" lines of surfaces of the aggregation work upholds the model of "dressed" ionic aggregates.  相似文献   

19.
The behavior of a rod-like, water-soluble, polyelectrolyte-surfactant aggregate system (pC16TVB) in aqueous solution is characterized to determine the partitioning of surfactant in these systems and the impact on aggregate structure. These aggregates are generated by in situ polymerization of a cationic surfactant-hydrotrope wormlike micelle system. This system differs from most other polyelectrolyte-surfactant systems in that the monomer groups and the surfactant are present in ion pairs in the absence of added salts or counterions, so the stoichiometry (with respect to charge) is 1:1 for the system. Therefore, after polymerization the surfactant acts as the counterion for the polyelectrolyte chains as other counterions (salts) are not available. Despite being present in a 1:1 molar ratio, the aggregates are surprisingly stable in water (concentrations >600 mg/mL have been achieved). The conformation of the polyelectrolyte in the aggregate is analogous to the case of a polymer chain in tight confinement in a "tube" or cylindrical pore in which the pore walls are attractive--the tube is formed by the surfactant which is free to dissociate from the aggregates. A simple model for the structure and partitioning is presented and the ability to manipulate the aggregate structure is demonstrated.  相似文献   

20.
The polymerization of elongated micellar structures offers a novel approach to the production of high aspect ratio, water-soluble amphiphilic nanoparticles. Three different surfactants were synthesized consisting of a cationic surfactant of the form (C(X)H(2X+1))trimethylammonium (where X = 14, 16, or 18) and a vinyl-containing counterion, 4-vinylbenzoate. The resulting polymer-surfactant aggregates have been polymerized to produce high aspect ratio nanoparticles which are insensitive to changes in solution conditions. The radius of the initial template is maintained on polymerization, whereas the template length is not. The aggregate radius is varied by changing the length of the surfactant tail, in this case producing aggregates with radii of 1.7, 2.0, or 2.4 nm. Variation of the initiator decomposition half-life, by means of using different initiators and varying temperature, is used to control the aggregate length between 80 and 500 nm. Through the process discussed here, both the radius and length of the aggregates are controlled independently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号