共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider use of a variable polarizing undulator for generating brilliant x-ray beams carrying orbital angular momentum. We find that higher harmonics of the radiation correspond to Laguerre-Gaussian modes with azimuthal mode indices l equal to one less than the harmonic number when the undulator is operated to produce circularly polarized light. Beams with nonzero l carry orbital angular momentum quantized in units of lvariant Planck's over 2pi per photon. When operated to produce linear polarization, the harmonics correspond to Hermite-Gaussian modes. Selection of these modes with conventional monochromator optics opens the door for new research with x-ray synchrotron and free-electron laser sources. 相似文献
2.
With the aid of the bosonic mode conversions in two different coordinate frames, we show that (1) the coordinate eigenstate is exactly the EPR entangled state representation, and (2) the Laguerre-Gaussian (LG) mode is exactly the wave function of the common eigenvector of the orbital angular momentum and the total photon number operator. Moreover, by using the conversion of the bosonic modes, theWigner representation of the LG mode can be obtained directly. It provides an alternative to the method of Simon and Agarwal. 相似文献
3.
Barbosa GA 《Optics letters》2008,33(18):2119-2121
Assuming two quantum states of spontaneous parametric downconversion carrying orbital angular momentum, one may ask the question what is the minimum probability of error in identifying between two of these biphoton states by an arbitrary physical measurement over the biphoton state generated. While correctly chosen geometries may lead to perfect distinguishability of modes, it is worth noticing that experimental subtleties may lead to a poor mode distinguishability. We discuss the case where a restricted range instead of the needed range of wave vectors is collected by the experimental setup. These considerations may be useful for some applications, e.g., cryptography. 相似文献
4.
《中国光学快报(英文版)》2017,(3)
We present the investigation on deformation of orbital angular momentum(OAM)modes in bending ring-core fibers(RCFs)with different structure sizes through numerical and experimental studies.The effective refractive index differences of even and odd fiber eigenmodes,which constitute OAM_(±1;1) modes,induced by RCF bending and their impacts on the OAM_(±1;1) mode intensity distributions are analyzed.Bending experiments are also carried out on three different RCFs,and the results match well with simulation values.It is found that RCFs with smaller inner and outer radii show preferable tolerance to the fiber bending. 相似文献
5.
Calvo GF 《Optics letters》2005,30(10):1207-1209
An exact Wigner representation of optical spatial modes carrying orbital angular momentum is found in closed form by exploiting the underlying SU(2) Lie-group algebra of their associated Poincaré sphere. Orthogonality relations and observables of these states are obtained within the phase space picture. Development of geometric phases on mode transformations is also elucidated. 相似文献
6.
The characteristic equation of orbital angular momentum modes in a ring fiber is derived. By solving the equation with the graphical method, mode distribution in a ring fiber can be precisely determined for arbitrary fiber parameters without relying on simulation of the vector field. This will provide a useful method to determine the separation between quasi-degenerate modes in a ring fiber. 相似文献
7.
We study geometric phases that arise from (cyclic) transformations of the transverse spatial structure of paraxial optical modes. Our approach involves bosonic ladder operators that, in the spirit of the quantum-mechanical harmonic oscillator, generate sets of transverse optical modes. It applies to modes of all orders in a very natural way and provides a universal geometric interpretation of the phase shifts acquired by nonastigmatic modes under typical experimental conditions. 相似文献
8.
We experimentally demonstrated that infrared light imprinted with orbital angular momentum (OAM) was linearly converted into visible light using four-wave mixing (FWM) via a ladder-type configuration in Rb85 atoms. Simultaneously, we theoretically simulated this linear conversion process, and the theoretical analysis was in reasonable agreement with the experimental results. A large single-photon detuning process was used to reduce the absorption of the atoms to the up-converted light and to avoid pattern formation in the FWM process. The multi-mode image linear conversion process is important for applications including image communications, astrophysics, and quantum information. 相似文献
9.
《中国光学快报(英文版)》2019,(12)
In free-space or in optical fibers, orbital angular momentum(OAM) multiplexing for information transmission has been greatly developed. The light sources used were well coherent communication bands, and the fibers used were customized. Here, we use an 810 nm femtosecond laser to generate optical vortices carrying OAM and then feed them into two kinds of commercial step-index few-mode fibers to explore the transmission characteristics of OAM modes. We also propose a method without multiple-input multiple-output digital signal processing to identify the input OAMs. It is of great guiding significance for high-dimensional quantum information experiments via the OAMs as a degree of freedom, using the light generated by the spontaneous parametric down-conversion as the source and the commercial fibers for information transmission. 相似文献
10.
Jian Wang 《中国科学:物理学 力学 天文学(英文版)》2019,(3)
Angular momentum, a fundamental physical quantity, can be divided into spin angular momentum(SAM) and orbital angular momentum(OAM) in electromagnetic waves. Helically-phased or twisted light beams carrying OAM that exploit the spatial structure physical dimension of electromagnetic waves have benefited wide applications ranging from optical manipulation to quantum information processing. Using the two distinct properties of OAM, i.e., inherent orthogonality and unbounded states in principle, one can develop OAM modulation and OAM multiplexing techniques for twisted optical communications. OAM multiplexing is an alternative space-division multiplexing approach employing an orthogonal mode basis related to the spatial phase structure. In this paper, we review the recent progress in twisted optical communications using OAM in free space and fiber. The basic concept of momentum, angular momentum, SAM, OAM and OAM-carrying twisted optical communications,key techniques and devices of OAM generation/(de)multiplexing/detection, high-capacity spectrally-efficient free-space OAM links, fiber-based OAM links, and OAM processing functions are presented. Ultra-high spectral efficiency and petabit-scale freespace data links are achieved benefiting from OAM multiplexing. The key techniques and challenges of twisted optical communications are also discussed. Twisted optical communications using OAM are compatible with other existing physical dimensions such as frequency/wavelength, amplitude, phase, polarization and time, opening a possible way to facilitate continuous increase of the aggregate transmission capacity and spectral efficiency through N-dimensional multiplexing. 相似文献
11.
12.
13.
A simple optical system for the self-homodyne detection of the orbital angular momentum (OAM) carried by optical beams is introduced. We propose two different schemes based on the use of optical hybrids, which could detect the OAM mode number, even when the input beam might be slightly distorted. A balanced receiver is used to perform a self-homodyne measure of the optical signal from two different locations at the beam wavefront. 相似文献
14.
A generalized definition of intrinsic and extrinsic transport coefficients is introduced. We show that transport coefficients from the intrinsic origin are solely determined by local electronic structure, and thus the intrinsic spin Hall effect is not a transport phenomenon. The intrinsic spin Hall current is always accompanied by an equal but opposite intrinsic orbital angular momentum Hall current. We prove that the intrinsic spin Hall effect does not induce a spin accumulation at the edge of the sample or near the interface. 相似文献
15.
The optical vortex beam has widely been studied and used because of its unique orbital angular momentum(OAM). To generate and control OAM in compact and integrated systems, many metallic metasurface devices have been proposed,however, most of them suffer from the low efficiency. Here, we propose and experimentally verify a high-efficiency monolayer metallic metasurface composed of semicircular nano-grooves distributed with detour phase. The metasurface can generate single or an array of OAM with... 相似文献
16.
17.
We report on the first quantitative test of acoustic orbital angular momentum transfer to a sound absorbing object immersed in a viscous liquid. This is done by realizing an original experiment that is to spin a millimeter-size target disk using an ultrasonic vortex beam. We demonstrate the balance between the acoustic radiation torque calculated from the Brillouin stress tensor and the viscous torque evaluated from the steady state spinning frequency. Moreover, we unveil a rotational acoustic streaming phenomenon that results from the acoustic angular momentum transfer to the host fluid. We show that it lowers the viscous torque, thereby restoring the torque balance. 相似文献
18.
We study the connection between the quark orbital angular momentum and the pretzelosity transverse-momentum dependent parton distribution function. We discuss the origin of this relation in quark models, identifying as key ingredient for its validity the assumption of spherical symmetry for the nucleon in its rest frame. Finally we show that the individual quark contributions to the orbital angular momentum obtained from this relation cannot be interpreted as the intrinsic contributions, but include the contribution from the transverse centre of momentum which cancels out only in the total orbital angular momentum. 相似文献
19.
We demonstrate that radiative transitions with Δl=−1 are strongly dominating for all values of n and l , except small region where l?n. 相似文献
20.
A dual-guided photonic crystal fiber(PCF) with low and flattened dispersion is designed, which can support a large number of orbital angular momentum(OAM) modes. The properties of the proposed PCF are systematically analyzed through the finite element method. The results show that the proposed PCF can support up to 84 OAM modes with 600 nm bandwidth ranging from 1000 to1600 nm. All values of mode purity are above 91.7%, the isolation parameters are larger than 67 dB and the maximum value up to 145 dB, the lowest confinement loss is only 5×10~(-13) dB·m~(-1).More importantly, the values of dispersion for all modes are less than 40 ps·km~(-1)·nm~(-1), and the lowest dispersion variation is only 0.7 ps·km~(-1)·nm~(-1). These superior optical properties make the proposed PCF have great advantage in stable transmissions of data and long-distance optical fiber communication system with large capacity. 相似文献