首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A multi-partite-controlled quantum secret sharing scheme using several non-orthogonal entanglement states is presented with unconditional security. In this scheme, the participants share the secret quantum state by exchanging the secret polarization angles of the disordered travel particles. The security of the secret quantum state is also guaranteed by the non-orthogonal multi-partite-controlled entanglement states, the participants' secret polarizations, and the disorder of the travelling particles. Moreover, the present scheme is secure against the particle-number splitting attack and the intercept-and-resend attack. It may be still secure even if the distributed quantum state is embedded in a not-so-weak coherent-state pulse.  相似文献   

2.
We propose a protocol for multiparty quantum secret sharing of secure direct communication using single photons. In this protocol, random phase shift operations instead of some special discrete unitary operations used usually are employed to realize the sharing controls. The security of this protocol with respect to various kinds of attacks is discussed. Due to the complete randomicity of the phase shift characterizing the unitary operations, the security of secret sharing is therefore enhanced.  相似文献   

3.
邓洪亮  方细明 《中国物理快报》2007,24(11):3051-3054
In this paper we propose a new scheme of long-distance quantum cryptography based on spin networks with qubits stored in electron spins of quantum dots. By" conditional Faraday- rotation, single photon polarization measurement, and quantum state transfer, maximal-entangled Bell states for quantum cryptography between two long-distance parties are created. Meanwhile, efficient quantum state transfer over arbitrary" distances is obtained in a spin chain by" a proper choice of coupling strengths and using spin memory- technique improved. We also analyse the security" of the scheme against the cloning-based attack which can be also implemented in spin network and discover that this spin network cloning coincides with the optimal fidelity- achieved by" an eavesdropper for entanglement-based cryptography.  相似文献   

4.
Using the single-photon nonlocality, we propose a quantum novel overloading cryptography scheme, in which a single photon carries two bits information in one-way quantum channel. Two commutative modes of the single photon, the polarization mode and the spatial mode, are used to encode secret information. Strict time windows are set to detect the impersonation attack. The spatial mode which denotes the existence of photons is noncommutative with the phase of the photon, so that our scheme is secure against photon-number-splitting attack. Our protocol may be secure against individual attack.  相似文献   

5.
We present a scheme for three-party simultaneous quantum secure direct communication by using EPR pairs. In the scheme, three legitimate parties can simultaneously exchange their secret messages. The scheme is also proven to be secure against the intercept-and-resend attack, the disturbance attack and the entangled-and- measure attack.  相似文献   

6.
李宏伟  银振强  王双  鲍皖苏  郭光灿  韩正甫 《中国物理 B》2011,20(10):100306-100306
Quantum key distribution is the art of sharing secret keys between two distant parties, and has attracted a lot of attention due to its unconditional security. Compared with other quantum key distribution protocols, the differential phase shift quantum key distribution protocol has higher efficiency and simpler apparatus. Unfortunately, the unconditional security of differential phase shift quantum key distribution has not been proved. Utilizing the sharp continuity of the von Neuman entropy and some basic inequalities, we estimate the upper bound for the eavesdropper Eve's information. We then prove the lower bound for the security of the differential phase shift quantum key distribution protocol against a one-pulse attack with Devatak-Winter's secret key rate formula.  相似文献   

7.
We analyze the security of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger (GHZ) state. It is shown that the receiver, using a special property of GHZ state, can illegally obtain 33.3% of the sender’s secret without any controller’s permission. The attack strategy is demonstrated in detail and an improvement of this protocol is discussed. The idea of this attack might be instructive for the cryptanalysis of quantum cryptographic protocols.  相似文献   

8.
In this work, we propose a quantum bit string commitment protocol using polarization of mesoscopic coherent states. The protocol is described and its security against brute force and quantum cloning machine attack is analyzed.  相似文献   

9.
A scheme for three-party quantum secret sharing of a private key is presented with single photons. The agent Bob first prepares a sequence of single photons with two biased bases and then sends them to the boss Alice who checks the security of the transmission with measurements and produces some decoy photons by rearranging the orders of some sample photons. Alice encodes her bits with two unitary operations on the photons and then sends them to the other agent. The security of this scheme is equivalent to that in the modified Bennett Brassard 1984 quantum key distribution protocol. Moreover, each photon can carry one bit of the private key and the intrinsic efficiency for qubits and the total efficiency both approach the maximal value 100% when the number of the bits in the key is very large.  相似文献   

10.
The security of the secure quantum telephone protocol [X.J. Wen, Y. Liu, N.R. Zhou, Opt. Commun. 275 (2007) 278] is analyzed. It is shown that an eavesdropper can attack the communicators’ messages by using fake particles and local operations. Moreover, the essential reasons of the information leakage are discussed. Finally, a simple improvement of the secure quantum telephone protocol is proposed.  相似文献   

11.
A scheme of multiparty quantum secret sharing of classical messages (QSSCM) [Z.J. Zhang et al., Opt. Commun. 269 (2007) 418] was proposed. Lin et al. [S. Lin et al., Opt. Commun. 281 (2008) 4553] showed the last agent can obtain half of the secret in Z.J. Zhang's et al. three-party QSSCM scheme and gave an improved version. We further show the first agent and the last agent can obtain all the secret without introducing any error in Zhang's et al. multiparty QSSCM scheme by a special attack with quantum teleportation. We also present an improved version.  相似文献   

12.
Security of a quantum secret sharing of quantum state protocol proposed by Guo et al. [Chin. Phys. Lett. 25 (2008) 16] is reexamined. It is shown that an eavesdropper can obtain some of the transmitted secret information by monitoring the classical channel or the entire secret by intercepting the quantum states, and moreover, the eavesdropper can even maliciously replace the secret message with an arbitrary message without being detected. Finally, the deep reasons why an eavesdropper can attack this protocol are discussed and the modified protocol is presented to amend the security loopholes.  相似文献   

13.
Decoy state quantum key distribution (QKD), being capable of beating PNS attack and being unconditionally secure has become attractive recently. However, in many QKD systems, disturbances of transmission channel make the quantum bit error rate (QBER) increase, which limits both security distance and key bit rate of real-world decoy state QKD systems. We demonstrate the two-intensity decoy QKD with a one-way Faraday- Michelson phase modulation system, which is free of channel disturbance and keeps an interference fringe visibility (99%) long period, over a 120 km single mode optical fibre in telecom (1550nm) wavelength. This is the longest distance fibre decoy state QKD system based on the two-intensity protocol.  相似文献   

14.
A five-qubit entangled state is constructed with the four-qubit genuine entangled state. As one of its applications, a controlled deterministic secure quantum communication scheme is proposed. Firstly, the supervisor prepares the five-qubit entangled state and distributes uniformly the four qubits to two users and keeps the rest one for control function. Then the receiver can perform jointly projective measurement on the encoded qubits from the sender to decrypt the secret information. The two-step security test ensures the security of the communication. Moreover, quantum dense coding is applied to enhance the capacity of quantum channel. The communication is realized under the control of the supervisor.  相似文献   

15.
We show that non-maximally entangled states can be used to build a quantum key distribution (QKD) scheme where the key is probabilistically teleported from Alice to Bob. This probabilistic aspect of the protocol ensures the security of the key without the need of non-orthogonal states to encode it, in contrast to other QKD schemes. Also, the security and key transmission rate of the present protocol is nearly equivalent to those of standard QKD schemes and these aspects can be controlled by properly harnessing the new free parameter in the present proposal, namely, the degree of partial entanglement. Furthermore, we discuss how to build a controlled QKD scheme, also based on partially entangled states, where a third party can decide whether or not Alice and Bob are allowed to share a key.  相似文献   

16.
We analyse the security of a quantum secure direct communication (QSDC) protocol and find that an eavesdropper can utilize a special property of GHZ states to elicit all or part of the transmitted secrets without being detected. The particular attack strategy is presented in detail. We give an improved version of this protocol so that it can resist this attack.  相似文献   

17.
We propose a scheme of quantum secret sharing between Alice's group and Bob's group with single photons and unitary transformations. In the protocol, one member in Alice's group prepares a sequence of single photons in one of four different states, while other members directly encode their information on the sequence of single photons via unitary operations; after that, the last member sends the sequence of single photons to Bob's group. Then Bob's, except for the last one, do work similarly. Finally the last member in Bob's group measures the qubits. If the security of the quantum channel is guaranteed by some tests, then the qubit states sent by the last member of Alice's group can be used as key bits for secret sharing. It is shown that this scheme is safe.  相似文献   

18.
In a recent paper [Chin. Phys. Lett 25(2008)1187], a quantum secret sharing scheme between multiparty and multiparty was presented. We show that the protocol is not secure because the last member in Alice's group can illegally obtain most secret messages without introducing any error. Finally, a possible way to avoid the security flaw is suggested.  相似文献   

19.
陆鸢  曾贵华  易智 《中国物理快报》2008,25(6):1950-1953
A polarization diversity receiver scheme is presented for improving efficiency of balance homodyne detection. The proposed scheme may mitigate polarization fluctuation between signal and local oscillator field. With simple linear optical component and electronic processing circuit, the noise caused by differential phase and polarization mode between signed and local oscillators may be significantly decreased. To track the polarization fluctuation, a novel algorithm based on polarization diversity receiver which can achieve better performance in terms of linear quantum optics principle is proposed.  相似文献   

20.
The security of the multiparty quantum secret sharing protocol presented by Zhang [Z.J. Zhang, Physica A, 361 (2006) 233] is analyzed. It is shown that this protocol is vulnerable to the insider attack since eavesdropping detection is performed only when all states arrive at the last agent. We propose an attack strategy and give an improved version of the original protocol. The improved protocol is robust and has the same traits with the original one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号