首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report electroluminescence in hybrid ZnO and conjugated polymer poly[2-methoxy-5-(3′, 7′-dimethyloctyloxy)- 1,4-phenylenevinylene] (MDMO-PPV) bulk heterojunction photovoltaic cells. Photoluminescence quenching experimental results indicate that the ultrafast photoinduced electron transfer occurs from MDMO-PPV to ZnO under illumination. The ultrafast photoinduced electron transfer effect is induced because ZnO has an electron affinity a bout 1.2 e V greater than that of MDMO-PP V. Electron 'back transfer' can occur if the interfacial barrier between ZnO and MDMO-PPV can be overcome by applying a substantial electric field. Therefore, electrolumi- nescence action due to the fact that the back transfer effect can be observed in the ZnO:MDMO-PPV devices since a forward bias is applied. The photovoltaic and electroluminescence actions in the same ZnO:MDMO-PPV device can be induced by different injection ways: photoinjection and electrical injection. The devices are expected to provide an opportunity for dual functionality devices with photovoltaic effect and electroluminescence character.  相似文献   

2.
Various compositional photovoltaic cells based on the blend of poly(3-hexylthiophene) (P3HT) as donors and TiO2 nanocrystals as acceptors are fabricated and investigated. It is demonstrated that the blend ratio of P3HT and TiO2 nanocrystals could greatly influence the performance of the photovoltaic cells. The maximum of 0.411% in power conversion efficiency under AM 1.5, 100mW/cm2, and 44.4% of fill factor are obtained in the solar cell with the blend weight ratio 1:1 of P3HT and TiO2 nanocrystals. The function of nanocrystal composition is discussed in terms of the results of photoluminescence spectroscopy, atomic force microscopy, transmission electron microscopy, and charge transport I-V curve.  相似文献   

3.
The performance of TiO2 nanotubes in bulk heterojunction of poly (2-methoxy-5-(2'-ethylhexyloxy)-1, 4-phenylenevinylene) (MEH-PPV)/TiO2 nanotubes is investigated. The transport properties are studied by using the time-of-flight technique (TOF). The carrier mobilities of both holes and electrons are not improved for the MEH-PPV:TiO2 composites compared with the pristine MEH-PPV. However, photoluminescence under the influence of the electric field indicates that the dissociation of excitons in the MEH-PPV:TiO2 composites, which is facilitated by photoinduced charge transfer, only requires a smaller electric field.  相似文献   

4.
Based on the mechanism of injection, transport and recombination of the charge carriers, we develop a model to calculate the delay time of electroluminescence (EL) from bilayer organic light emitting diodes. The effect of injection, transport and recombination processes on the EL delay time is discussed, and the relationship between the internal interface barrier and the recombination time is revealed. "]~he results show that the EL delay time is dominated by the recombination process at lower applied voltage and by the transport process at higher applied voltage. When the internal interface barrier varies from 0.15 eV to 0.3 eV, the recombination delay time increases rapidly~ while the internal interface barrier exceeds about 0.3eV~ the dependence of the recombination delay time on applied voltage is almost undiversified, which may serve as a guideline for designing of a high-speed EL response device.  相似文献   

5.
瞿述  ;彭景翠 《中国物理快报》2008,25(8):3052-3055
Conducting polymer polydimethylsiloxane (PDMS) is studied for the high performance electrode of organic electroluminescence devices. A method to prepare the electrode consisting of a SiC thin film and PDMS is investigated. By using ultra thin SiC films with different thicknesses, the organic electroluminescence devices are obtained in an ultra vacuum system with the model device PDMS/SiC/PPV/Alq3, where PPV is poly para-phenylene vinylene and Alq3 is tris(S-hydroxyquinoline) aluminium. The capacitance voltage (C - V), capacitance-frequency (C - F), current-voltage (I - V), radiation intensity-voltage (R - V) and luminance eFficiency-voltage (E - V) measurements are systematically studied to investigate the conductivity, Fermi alignment and devices properties in organic semiconductors. Scanning Kelvin probe measurement shows that the work function of PDMS/SiC anode with a 2.5-nm SiC over layer can be increased by as much as 0.28eV, compared to the conventional ITO anode. The result is attributed to the charge transfer effect and ohmic contacts at the interface.  相似文献   

6.
A novel photovoltaic cell with an active layer of poly(phenyleneethynylene) (PPE)/C60/N,N'-diphenyl-N,N'-di-(m-tolyl)-p-benzidine (TPD) is designed. In the active layer, PPE is the major component; C60 and TPD are the minor ones. Compared with a control BHJ device based on PPE/C60, the short circuit current density Jsc is increased by 1 order of magnitude, and the whole device performance is increased greatly, however the open circuit voltage Voc is largely decreased. The possible mechanism of the improved performance may be as follows: In the PPE/C60/TPD device, PPE, C60, and TPD serve as the energy harvesting material, the electron transport material, and the hole transport material, respectively. As the TPD and C60 are spatially separated by PPE, the charge recombination is effectively retarded.  相似文献   

7.
We introduce a thin LiF layer into tris-8-hydroxyquinoline aluminium (Alq3 ) based bilayer organic light-emitting devices to block hole transport. By varying the thickness and position of this LiF layer in Alq3, we obtain an electroluminescent efficiency increase by a factor of two with respect to the control devices without a LiF blocking layer. By using a 10nm dye doped Alq3 sensor layer, we prove that LiF can block holes and excitons effectively. Experimental results suggest that the thin LiF layer may be a good hole and exciton blocking layer.  相似文献   

8.
A ZnO homojunction light emitting device was grown on n+ GaAs substrate by pulsed laser deposition. As-doped ZnO film by diffusion of As from the substrate was used for the p-type side and Al-doped ZnO film for the n-type side of the device. A distinct electroluminescence emission consisting of a dominant emission peak at ∼2.5 eV and a weak shoulder centered at ∼3.0 eV was observed at room temperature. The I-V characteristic of the ZnO homojunction showed a good rectifying behavior with a turn-on voltage of ∼4.5 V and a reverse breakdown voltage of ∼9 V.  相似文献   

9.
Blue electroluminescence from SiOx films deposited by electron beam evaporation was observed. This blue emission blueshifted from 450 to 410 nm with increasing applied voltage. The dependences of blue emission on applied voltage, frequency and conduction current were studied. Our experimental data support that blue emission from SiOx films is the result of both recombination of charge carriers injected from opposite electrodes and impact excitation of hot electrons, the recombination of carriers injected is dominant in low and medium electric fields but hot electron impact excitation is dominant under high electric fields.  相似文献   

10.
We report on the photovoltaic properties of Lao.7Sro.3MnO3//ZnO heterojunction fabricated by pulsed laser deposition methods. Nanosecond photovoltaic pulses are observed in this junction in the wavelength range from ultraviolet-visible to infrared. A qualitative explanation is presented, based on an analysis of the photovoltaic signals of p-n heterojunction.  相似文献   

11.
ZnS:Cu,Cl electroluminescence (EL) phosphors were prepared by high-temperature (1150 °C) solid-state reaction, subsequent ultrasonic treatment (t=0-60 min) and final low-temperature annealing process at 750 °C. The as-synthesized phosphors were characterized by X-ray powder diffraction (XRD), UV-vis absorbance spectra, electron probe microanalyzer (EPMA) and photoluminescence (PL) spectra. EL performance was investigated on an EL lamp fabricated by screen-printing at 100 V and 400 Hz. Ultrasound irradiation leads to intensity reductions and width increases of some XRD diffraction peaks, and results in a slight red-shift of UV-vis absorption edge. It also exhibits strong influences on PL and EL properties of the phosphors. Generally, PL performance monotonically declines with the increase of ultrasonic time, while EL performance benefits from the ultrasonic treatment and is superior to that of the commercial ones. The defects in the microstructure induced by the ultrasonic treatment are the fundamental reason for the change of PL and EL performances.  相似文献   

12.
We have studied the structural, electrical and optical properties of MOS devices, where the dielectric layer consists of a substoichiometric SiOx (x<2) thin film deposited by plasma-enhanced chemical vapor deposition. After deposition the samples were annealed at high temperature (>1000 °C) to induce the separation of the Si and the SiO2 phases with the formation of Si nanocrystals embedded in the insulating matrix. We observed at room temperature a quite intense electroluminescence (EL) signal with a peak at ∼850 nm. The EL peak position is very similar to that observed in photoluminescence in the very same device, demonstrating that the observed EL is due to electron–hole recombination in the Si nanocrystals and not to defects. The effects of the Si concentration in the SiOx layer and of the annealing temperature on the electrical and optical properties of these devices are also reported and discussed. In particular, it is shown that by increasing the Si content in the SiOx layer the operating voltage of the device decreases and the total efficiency of emission increases. These data are reported and their implications discussed. Received: 31 August 2001 / Accepted: 3 September 2001 / Published online: 17 October 2001  相似文献   

13.
The photographic surveying of electroluminescence (EL) under forward bias was proved to be a powerful diagnostic tool for investigating not only the material properties but also process induced deficiencies visually in silicon (Si) solar cells. Under forward bias condition, solar cells emit infrared light (wavelength around 1000 to 1200 nm) whose intensity reflects the number of minority carriers in base layers. Thus, all the causes that affect the carrier density can be detected, i.e., the minority carrier diffusion length (or in other words, lifetime), recombination velocity at surfaces and interfaces, etc. (intrinsic material properties), and wafer breakage and electrode breakdown, etc. (extrinsic defects). The EL intensity distribution can be captured by Si CCD camera in less than 1 s, and the detection area simply depends upon the optical lens system suitable to the wide range of 1 cm–1.5 m. This fast and precise technique is superior to the conventional scanning method such as the laser beam induced current (LBIC) method. The EL images are displayed as grayscale, which leads to the difficulty of distinguishing the sorts of those deficient areas. Since the intrinsic deficiency is more sensitive to temperature than the extrinsic deficiency, the change in solar cell temperature can offer the difference in EL intensity contrasts. These effects upon the measurement temperature can be applied to categorize the types of deficiency in the crystalline Si solar cell.  相似文献   

14.
The insertion layer of TiO2 between polymer-fullerene blend and LiF/AI electrode is used to enhance the shortcircuit current Isc and fill factor (FF). The solar cell based on the blend of poly[2-methoxy-5-(2'-ethylhexyloxy)- 1,4-phenylenevinylene] (MEH-PPV) and C60 with the modifying layer of TiO2 (about 20nm) shows the open- circuit Voc of about 0.62 V, short circuit current Isc of about 2.35 mA/cm^2, filling factor FF of about 0.284, and the power conversion efficiency (PCE) of about 2.4% under monochromatic light (50Onto) photoexcitation of about 17mW/cm^2. Compared to ceils without the TiO2 layer, the power conversion efficiency increases by about 17.5%. Similar effect is also obtained in cells with the undoped MEH-PPV structure of ITO/PEDOT:PASS/MEH- PPV/(TiO2)LiF/AI. The improved solar cell performance can be attributed to enhanced carrier extraction efficiency at the active layer/electrode interfaces when TiO2 is inserted.  相似文献   

15.
Photovoltaic response in the heterojunction of La1-x SrxMnO3/SrNby Ti1-yO3 (LSMO/SNTO) is analyzed theoretically based on the drift-diffusion model. It is found that the decrease of acceptor concentration in the La1-xSrxMnO3 layer of hereto junction can increase the peak value of photovoltaic signal and the speed of photovoltaic response, whereas the changing of donor concentration in the SrNby Ti1-yO3 layer has no such evident effect. Furthermore, the result also indicates that the modulation of Sr doping in La1-xSrxMnO3 is an effective method to accommodate the sensitivity and the speed of photovoltaic response for LSMO/SNTO photoelectric devices.  相似文献   

16.
Defect-related photoconductivity of single ZnO nanowires is investigated. The photoconductivity shows powerlaw dependence with incident green laser intensity due to the defect mechanisms including both recombination centres and traps. The device based on single ZnO nanowire shows a sensitive photoresponse to green light with significant on/off ratios. In addition, the photocurrent & highly sensitive to the polarization of the incident illumination. Therefore, the nanowire may act as a polarized photodetector.  相似文献   

17.
Employing an organic dye salt of trans-4-[p-[N-methyl-N-(hydroxymethyl)amino]styryl]-N-methylphridinium tetra\-phenylborate (ASPT) as the active layer, 8-hydrocyquinoline aluminium (Alq3) as the electron transporting layer and N,N’-diphenyl-N,N’-bis(3-methylphenyl)-[1,1’-biphenyl]-4,4’-diamine (TPD) as the hole transporting layer, respectively, we fabricate a multi-layered organic light-emitting diode and observe the colour tunable electroluminescence (EL). The dependence of the EL spectra on the applied voltage is investigated in detail, and the recombination mechanism is discussed by considering the variation of the hole-electron recombination region.  相似文献   

18.
Low fill factors generally limit the efficiency of emitter‐wrap‐through (EWT) solar cells. Until now, a conventional series resistance limitation along the laser‐drilled EWT vias has usually been assumed to be responsible for this effect. We demonstrate that the characteristic fill factor loss is caused by a crucial change in the diffusion currents inside the base, which are influenced by the conductivity along the laser‐drilled EWT vias. In addition, we show that the EWT via conductivity influences the fill factor loss caused by an iron contaminated base. This result affects the proposition that the EWT design is suitable for multicrystalline silicon in which interstitial iron is known to be the main contaminant. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The physical mechanism of two-photon response (TPR) in semi-insulating GaAs is studied. The measured photocurrent generated from the fabricated hemispherical GaAs sample responding to 1.3μm continuous wave laser shows a quadratic dependence on the coupled optical power and no saturation with the bias. The angular dependence of the photocurrent on the azimuth is in agreement with the anisotropy of double-frequency absorption (DFA) in GaAs single crystals. These results demonstrate DFA is the dominant mechanism of TPR in GaAs.  相似文献   

20.
In this work we studied the charge carriers' behaviour in quantum structures where the symmetry with respect to space coordinates and time-reversal symmetry are broken simultaneously. As the models of such structures we considered finite triangular as well as finite semi-parabolic quantum wells placed in external magnetic field. We have shown by numerical analysis that the energy spectra of charge carriers in such structures are anisotropic with respect to in-plane (transverse) motion ?n(+kx)≠?n(−kx). This leads to the anisotropy of charge carrier's in-plane momentum transfer which can be very naturally explained by introducing the concept of charge carriers ‘renormalized’ effective masses. The anisotropy of momentum transfer leads to interesting photo-galvanic effect, the anisotropy of photo-conductivity σ(+kx)≠σ(−kx) and as it follows from our calculations, the effect though not very great, could be measurable for the magnetic field of about few T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号