首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
侯振桃  李彦如  刘何燕  代学芳  刘国栋  刘彩池  李英 《物理学报》2016,65(12):127102-127102
采用基于密度泛函理论的第一性原理结合投影缀加平面波的方法,研究了GaN中Ga被稀土元素Gd替代以及与邻近N或Ga空位组成的缺陷复合体的晶格常数、磁矩、形成能以及电子结构等性质.结果发现,Gd掺杂GaN后禁带宽度变窄,由直接带隙半导体转为间接带隙半导体;单个Gd原子掺杂给体系引入大约7μB的磁矩;在Gd与Ga或N空位形成的缺陷复合体系中,N空位对引入磁矩贡献很小,大约0.1μB,Ga空位能引入约2μB的磁矩.随着Ga空位的增多,体系总磁矩增加,但增加量与Ga空位的位置分布密切相关.当Ga空位分布较为稀疏时,Gd单原子磁矩受影响较小,但当Ga空位距离较近且倾向于形成团簇时,Gd单原子磁矩明显增加,而且这种情况下空位形成能也最小.  相似文献   

2.
Electronic state calculations for point defects on the GaSb(110) surface are presented using a cluster, in order to indicate theoretically the usefulness of the defect model as a mechanism of the Fermi level pinning in Schottky barriers. The results demonstrate that the presence of atomic Ga at surface Sb vacancy sites in addition to surface Ga vacancies gives electronic states localized near the top of the valence band which can be responsible for the pinning observed experimentally.  相似文献   

3.
Electronic properties of both Pb and S vacancy defects in PbS(1^-00) have been studied using the first-principles density functional theory (DFT) calculations with the plane-wave pseudopotentials. It is found that the density of states (DOS) near the top of the valence band and the bottom of the conduction band is significantly modified by these defects. Our calculation indicates that in the case of S vacancy defects the Fermi energy shifts to the conduction band making it as an n-type PbS (donor). However, in the case of Pb vacancy, because of the appreciable change of the DOS, the system acts as a p-type PbS (accepter). In addition, the structural relaxation shows that the defect leads to outward relaxation of the nearest-neighbouring atoms and inward relaxation of the next-nearest neighbouring atoms.  相似文献   

4.
We investigate gallium and nitrogen vacancies in gallium nitride (GaN) bulk and nanowires using self-interaction corrected pseudopotentials (SIC). In particular, we examine the band structures to compare and contrast differences between the SIC results and standard density functional theory (DFT) results using a generalized gradient approximation (GGA) (Perdew et al 1996 Phys. Rev. Lett. 77 3865) functional. For pure nanowires, we observed similar trends in the bandgap behaviour, with the gap decreasing for increasing nanowire diameters (with larger bandgaps using SIC pseudopotentials). For gallium vacancies in bulk GaN and GaN nanowires, SIC results are similar to DFT-GGA results, albeit with larger bandgaps. Nitrogen vacancies in bulk GaN show similar defect-induced states near the conduction band, whilst a lower lying defect state is observed below the valence band for the DFT-GGA calculations and above the valence band for the SIC results. For nitrogen vacancies in GaN nanowires, similar defect states are observed near the conduction band, however, while the SIC calculations also show a defect state/s above the valence band, we were unable to locate this state for the DFT-GGA calculations (possibly because it is hybridized with edge states and buried below the valence band).  相似文献   

5.
We performed total energy electronic-structure calculations based on DFT that clarify the intrinsic magnetism of undoped GaN. The magnetism is due to Ga, instead of N, vacancies. The origin of magnetism arises from the unpaired 2p electrons of N surrounding Ga vacancy. At a vacancy concentration of 5.6%, the ferromagnetic state is 181 meV lower than the antiferromagnetic state. Our findings are helpful to gain a more novel understanding of structural and spin properties of Ga vacancy in wurtzite GaN and also provide a possible way to generate magnetic GaN by introducing Ga vacancies instead of doping with transition-metal atoms.  相似文献   

6.
We employ plane-wave with ultrasoft pseudopotential method to calculate and compare the total density of states and partial density of states of bulk-phase GaN,Ga0.9375 N,and GaN0.9375 systems based on the first-principle density-functional theory(DFT).For Ga and N vacancies,the electronic structures of their neighbor and next-neighbor atoms change partially.The Ga0.9375 N system has n-type semiconductor conductive properties,whereas the GaN0.9375 system has p-type semiconductor conductive properties.By studying the optical properties,the influence of Ga and N vacancy defects on the optical properties of GaN has been shown as mainly in the low-energy area and very weak in high-energy area.The dielectric peak influenced by vacancy defects expands to the visible light area,which greatly increases the electronic transition in visible light area.  相似文献   

7.
Nitrogen doping-induced changes in the electronic properties, defect formation, and surface structure of TiO2 rutile(110) and anatase(101) single crystals were investigated. No band gap narrowing is observed, but N doping induces localized N 2p states within the band gap just above the valence band. N is present in a N(III) valence state, which facilitates the formation of oxygen vacancies and Ti 3d band gap states at elevated temperatures. The increased O vacancy formation triggers the 1 x 2 reconstruction of the rutile (110) surface. This thermal instability may degrade the catalyst during applications.  相似文献   

8.
彭亚晶  蒋艳雪 《物理学报》2015,64(24):243102-243102
含能材料中的微观缺陷是导致“热点”形成并相继引发爆轰的重要因素. 然而, 由于目前人们对材料内部微观缺陷的认识不足, 限制了对含能材料中“热点”形成微观机理的理解, 进而阻碍了含能材料的发展和应用. 为了洞悉含能材料内部微观缺陷特性及探索缺陷引发“热点”的形成机理, 利用第一性原理方法研究了分子空位缺陷对环三亚甲基三硝胺(RDX) 含能材料的几何结构、电子结构及振动特性的影响, 探讨了微观缺陷对初始“热点”形成的基本机理. 采用周期性模型分析了分子空位缺陷对RDX几何结构、电子能带结构、电子态密度及前线分子轨道的影响. 采用团簇模型分析了分子空位缺陷对RDX振动特性的影响. 结果发现, 分子空位缺陷的存在使其附近的N–N键变长, 分子结构变得松弛; 使导带中很多简并的能级发生分离, 电子态密度减小, 并使由N-2p和O-2p轨道形成的导带底和价带顶均向费米面方向移动, 降低了能带隙值, 增加了体系活性. 前线分子轨道及红外振动光谱的计算分析表明, 分子缺陷使最高已占分子轨道电荷主要集中在缺陷附近的分子上, 且分子中C–H键和N–N键能减弱. 这些特性表明, 分子空位缺陷的存在使体系能带隙变小, 并使缺陷附近的分子结构松弛, 电荷分布增多, 反应活性增强; 在外界能量激发下, 缺陷附近分子将变得不稳定, 分子中的C–H键或N–N键较易先发生断裂, 发生化学反应释放能量, 进而成为形成“热点”的根源.  相似文献   

9.
Because of their possible applications in spintronic and optoelectronic devices, GaN dilute magnetic semiconductors (DMSs) doped by rare-earth (RE) elements have attracted much attention since the high Curie temperature was obtained in RE-doped GaN DMSs and a colossal magnetic moment was observed in the Gd-doped GaN thin film. We have systemically studied the GaN DMSs doped by RE elements (La, Ce–Yb) using the full-potential linearized augmented plane wave method within the framework of density functional theory and adding the considerations of the electronic correlation and the spin-orbital coupling effects. We have studied the electronic structures of DMSs, especially for the contribution from f electrons. The origin of magnetism, magnetic interaction and the possible mechanism of the colossal magnetic moment were explored. We found that, for materials containing f electrons, electronic correlation was usually strong and the spin–orbital coupling was sometimes crucial in determining the magnetic ground state. It was found that GaN doped by La was non-magnetic. GaN doped by Ce, Nd, Pm, Eu, Gd, Tb and Tm are stabilized at antiferromagnetic phase, while GaN doped by other RE elements show strong ferromagnetism which is suitable materials for spintronic devices. Moreover, we have identified that the observed large enhancement of magnetic moment in GaN is mainly caused by Ga vacancies (3.0μB per Ga vacancy), instead of the spin polarization by magnetic ions or originating from N vacancies. Various defects, such as substitutional Mg for Ga, O for N under the RE doping were found to bring a reduction of ferromagnetism. In addition, intermediate bands were observed in some systems of GaN:RE and GaN with intrinsic defects, which possibly opens the potential application of RE-doped semiconductors in the third generation high efficiency photovoltaic devices.  相似文献   

10.
魏哲  袁健美  李顺辉  廖建  毛宇亮 《物理学报》2013,62(20):203101-203101
基于密度泛函理论的第一性原理计算, 研究了含B原子空位(VB), N原子空位(VN), 以及含B–N键空位 (VB+N)缺陷的二维氮化硼(h-BN)的电子和磁性质. 在微观结构上, VB体系表现为在空位附近的N原子重构成等腰三角形, VN体系靠近空穴的B 原子形成等边三角形, VB+N体系靠近空穴处的B和N原子在h-BN平面上重构为梯形. 三种空位缺陷都使h-BN的带隙类型从直接带隙转变为间接带隙. VB体系的总磁矩为1.0 μB, 磁矩全部由N原子贡献. 其中空穴周围的三个N原子磁矩方向不完全一致, 存在着铁磁性和反铁磁性两种耦合方式. 对于VN 体系, 整个晶胞内的总磁矩也为1.0 μB, 磁矩在空穴周围区域呈现一定的分布. 关键词: 二维h-BN 空位 电子结构 磁性  相似文献   

11.
用密度泛函理论研究直径为9.5Å,15.9Å和22.5Å,未钝化和H钝化GaN纳米线的能带和态密度.结果表明:未钝化和H钝化GaN纳米线的能隙都是直接带隙,未钝化GaN纳米线的禁带宽度随着直径的增加减小,但是变化不明显,H钝化GaN纳米线的禁带宽度随着直径增大也是减小的,但是减小的幅度比未钝化的大.未钝化GaN纳米线表面N原子的2p电子主要聚集在价带顶,表面Ga原子的4p电子主要聚集在导带底,这两种电子都具有很强的局域性,而且决定着能隙值;加H钝化可以消除表面原子产生的表面效应.  相似文献   

12.
采用基于第一性原理的贋势平面波方法,对不同类型点缺陷单层MoS2电子结构、能带结构、态密度和光学性质进行计算。计算结果表明:单层MoS2属于直接带隙半导体,禁带宽度为1.749ev,V-Mo缺陷的存在使得MoS2转化为间接带隙Eg=0.671eV的p型半导体,V-S缺陷MoS2的带隙变窄为Eg=0.974eV,S-Mo缺陷的存在使得MoS2转化为间接带隙Eg=0.482eV; Mo-S缺陷形成Eg=0.969eV直接带隙半导体,费米能级上移靠近价带。 费米能级附近的电子态密度主要由Mo的4d态和s的3p态电子贡献。光学性质计算表明:空位缺陷对MoS2的光学性质影响最为显著,可以增大MoS2的静态介电常数、折射率n0和反射率,降低吸收系数和能量损失。  相似文献   

13.
任超  李秀燕  落全伟  刘瑞萍  杨致  徐利春 《物理学报》2017,66(15):157101-157101
基于密度泛函的第一性原理研究了Ag空位、O空位和Ag-O双空位对β-AgVO_3的电子结构及光学性质的影响.采用广义梯度近似平面波超软赝势GGA+U方法,对不同缺陷体系的形成能、能带结构、电子态密度、差分电荷密度和吸收光谱进行了计算和分析.通过比较不同Ag空位和O空位的形成能,确定了β-AgVO_3中主要形成Ag3空位和O1空位,并且Ag空位较O空位更容易形成.Ag3空位和O1空位的存在都使得β-AgVO_3带隙有一定程度的减小;Ag3空位使β-AgVO_3呈现p-型半导体性质,而O1空位和Ag3-O1双空位使β-AgVO_3呈现n-型半导体性质.Ag3和O1空位对晶体在可见光范围内的光吸收影响较小.  相似文献   

14.
顾艳妮  吴小山 《物理学报》2017,66(16):163102-163102
具有一定能量的光照导致低温绝缘二氧化钒(VO_2)发生绝缘体金属转变.本文通过密度泛函理论的Heyd-Scuseria-Ernzerhof杂化泛函方法对含氧空穴的低温绝缘VO_2非磁M1相进行第一性原理研究.研究发现,含氧空穴的M1的晶格参数几乎不变,但氧空穴附近的长的V—V键长却变短了.进一步研究发现,尽管纯的非磁M1的带隙是0.68 eV,但含O1和O2位的氧空穴非磁M1带隙分别为0.23 eV和0.20 eV,同时含有O1和O2位氧空穴非磁M1带隙为0.15 eV,这很好地解释了实验结果.  相似文献   

15.
The effect of intrinsic defects and isoelectronic substitutional impurities on the electronic structure of boron-nitride (BN) nanotubes is investigated using a linearized augmented cylindrical wave method and the local density functional and muffin-tin approximations for the electron potential. In this method, the electronic spectrum of a system is governed by a free movement of electrons in the interatomic space between cylindrical barriers and by a scattering of electrons from the atomic centers. Nanotubes with extended defects of substitution NB of a boron atom by a nitrogen atom and, vice versa, nitrogen by boron BN with one defect per one, two, and three unit cells are considered. It is shown that the presence of such defects significantly affects the band structure of the BN nanotubes. A defect band π(B, N) is formed in the optical gap, which reduces the width of the gap. The presence of impurities also affects the valence band: the widths of s, sp, and pπ bands change and the gap between s and sp bands is partially filled. A partial substitution of the N by P atoms leads to a decrease in the energy gap, to a separation of the Ds(P) band from the high-energy region of the s(B, N) band, as well as to the formation of the impurity (P) and *(P) bands, which form the valence-band top and conduction-band bottom in the doped system. The influence of partial substitution of N atoms by the As atom on the electronic structure of BN nanotubes is qualitatively similar to the case of phosphorus, but the optical gap becomes smaller. The optical gap of the BN tubule is virtually closed due to the effect of one Sb atom impurity per translational unit cell, in contrast to the weak indium-induced perturbation of the band structure of the BN nanotube. Introduction of the one In, Ga or Al atom per three unit cells of the (5, 5) BN nanotube results in 0.6 eV increase of the optical gap. The above effects can be detected by optical and photoelectron spectroscopy methods, as well as by measuring electrical properties of the pure and doped BN nanotubes. They can be used to design electronic devices based on BN nanotubes.  相似文献   

16.
The influence of structural vacancies in metal and non-metal sublattices on the electronic structure of titanium carbide and oxide is studied by the nonempirical Hartree-Fock-Slater method in the cluster approximation. The main valence band changes for non-stoichiometric compounds are connected with the narrowing of bands due to subtraction of a number of electronic states and an increase of density of states near the Fermi level. Vacancy states appear to be localized in the unoccupied region of the energy spectrum; their admixture in the valence band is very small. The valency of metal atoms is shown to vary continuously in accordance with the stoichiometry ratio. The vacancy charge is very much smaller than the formal ionicity of the atom removed. It is shown that in defect compounds there is essentially no bonding charge connected with the vacancy center.The results obtained are compared with the data of previous calculations and physico-chemical properties.  相似文献   

17.
We have examined the formation of a local moment by considering various defects in ZnO. The localization of the defect induced state is found to determine the presence/absence of a local moment. A lot of attention on the probable origin of magnetism in wide band gap oxides has focused on cation vacancies. Here we show that oxygen interstitial atoms give rise to a large magnetic moment which results in a spin polarization of both the conduction and valence bands, in addition to spin polarized gap states. A Stoner mechanism is invoked and the relevant Stoner parameters are determined to be 0.7 eV for an oxygen atom in the presence of an oxygen interstitial but reduced to 0.2 eV on oxygen in the presence of a Zn vacancy.  相似文献   

18.
Local electronic structures around Ga and Mn in Mn-doped GaN film with Tc of 940 K are investigated by K X-ray absorption near edge structure (XANES) analysis. It was found that the shape of the Ga XANES spectrum is remarkably similar to that of the un-doped GaN film indicating that the local electronic structure around Ga is not disturbed with Mn doping. As for the Mn XANES spectra, obvious pre-edge peaks were observed: the fine structures in the pre-edges correspond with calculated Mn 3d partial density of states which predict impurity band formation with the Fermi energy stays in the spin-up band. These findings imply that Mn 3d levels stay within the gap with the Fermi energy stays in the spin-up band.  相似文献   

19.
Electronic structure calculations were performed for substitutional erbium rare-earth impurity in cubic GaN using density-functional theory calculations within the LSDA+U approach (local spin-density approximation with Hubbard-U corrections). The LSDA+U method is applied to the rare-earth 4f states. The ErxGa1−xN is found to be a semiconductor, where the filled f-states are located in the valence bands and the empty ones above the conduction band edge. The filled and empty f-states are also shown to shift downwards and upwards in the valence and conduction bands, respectively, with increase in the U potentials.  相似文献   

20.
本文取原子集团模型Si8H18,Si17及从连续无规网络中挖取的集团模型Si29和Si47,用CNDO LCAO-MO方法计算其电子结构,探讨了a-Si:H中由弱键、弯键和带电组态等本征缺陷引起的赝隙态分布。结果表明,当弱键拉伸时,两个弱键态移动并收缩至带隙中央;过剩电荷使弱键能级移至价带顶或导带底附近;弯键态主要出现在价带顶附近。当弯键曲率较大时,弯键态上移至带隙中央以下的区域。结构拓扑无序导致 关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号