首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comprehensive model is presented that describes preionization and discharge ignition processes in large-aperture molecular-gas lasers. By initially filling the interelectrode gap with electrons and establishing a space-charge screen at the cathode, electron avalanche begins adjacent to the anode. Cathode-directed ionization waves develop and ignite the discharge. Dynamic profiling of the electric-field distribution and Penning ionization of a readily ionizable additive combine to decrease both the ignition and quasi-steady-state voltages.  相似文献   

2.
Spiral patterns are obtained in a dielectric barrier discharge system with water electrodes. The dynamics of spiral formation and transition is investigated. Wavelength characteristic of spiral patterns is also studied. Correlation measurements indicate that the wavelength of spiral pattern increases with the increasing gas gap width and oscillates with the increasing drive frequency.  相似文献   

3.
A weakly luminous layer close to the anode is observed at time far ahead of the current pulse in dielectric barrier discharge of helium at atmospheric pressure and it is considered as the result of a very weak Townsend discharge. Based on the assumption that the space charge produced by this Townsend discharge is too small to distort the uniform electric field in the gas gap, the electrons have more or less the same energy over the entire gap and the spatial distribution of the discharge light is proportional to the distribution of electron density. This light distribution is obtained by processing side-view photograph of discharge gap using an intensified charge coupled device camera with an exposure time of 20ns. By fitting a theoretically derived formula with the measured curve of light distribution, the Townsend electron ionization coefficient α is determined to be 31 cm^-1 at E/p = 3.6 V·cm^-1·Torr^-1, which is much higher than that obtained by solving the Boltzmann equation of pure helium. It is believed that penning ionization of helium metastables with impurity of nitrogen molecules makes great contribution to the experimentally determined α value. The contribution of this penning ionization to α is roughly estimated.  相似文献   

4.
5.
Low-frequency (2.72-3.70 Hz) relaxation oscillations at 100 mTorr at higher absorbed power were observed from time-varying optical emission of the main discharge chamber and the periphery. We interpret the low frequency oscillations using an electromagnetic model of the slot impedance with parallel connection variational peripheral capacitance, coupled to a circuit analysis of the system including the matching network. The model results are in general agreement with the experimental observations, and indicate a variety of behaviours dependent on the matching conditions.  相似文献   

6.
A one-dimensional fluid simulation on argon rf glow discharge with varying linearly gas pressure from 1 Torr to 100 Tort is performed. The model based on mass conservation equations for electron and ion under diffusion and mobility approximation, and the electron energy conservation equation is solved numerically by finite volume method. The numerical results show that a uniform plasma with high density can be obtained from rf glow discharge with varying gas pressure, and the density of plasma becomes higher as the gas pressure varies from 1 Tort to 100 Tort. It is also shown that in the range of the gas pressure from 1 Tort to 100 Tort with the slower rate of varying gas pressure, higher density of plasma can be obtained.  相似文献   

7.
We perform the theoretical simulation of the concentric-ring patterns between two parallel electrodes covered with thin dielectric layers within the scope of a two-dimensional diffusion-drift model at atmospheric pressure. The time evolution of the discharge patterns is studied and the concentric-ring patterns with different radii shift alternately. The spatial-temporal evolution of electron density in a cycle at different time scales is performed.  相似文献   

8.
Transition of Discharge Mode of a Local Hollow Cathode Discharge   总被引:1,自引:0,他引:1       下载免费PDF全文
The discharge characteristics of hollow cathode discharge in argon in a cylindrical cavity are investigated experi- mentally. The voltage-current (V - I) characteristics and the light emission are measured. It is found that the discharge plasma is localized inside the hollow cavity, with an extensive Faraday dark space between the cathode and the anode. The discharge develops from predischarge to abnormal glow discharge, the hollow cathode effect (HCE) and a hybrid mode as the discharge current increases. The onset of the HCE is found for the first time by the transition from abnormal glow discharge together with a significant decrease in the slope of the V - I curve which shows a positive differential resistivity. The voltage increases proportionally with the current when the HCE is reached.  相似文献   

9.
Model calculations of the small-signal gain and laser spectra and of laser output energies have been performed for various discharge-pumped XeCl laser systems. From comparison between model and experiment, limits have been set for the rate coefficients for XeCl(B,C) quenching by Ne, Ne + Xe and electrons. The influence of non-stationarity and electron-electron collisions in the solution of the Boltzmann equation on the estimation of these rate coefficients has been investigated. Some rough estimates of the XeCl(X,v) dissociation rate coefficients are given. It is shown, that due to the inclusion of bound-free emission from the XeCl(B, = 1) level it is not necessary to include strong variations of these rate coefficients with the vibrational quantum number to reproduce the intensity ratios of the two laser lines observed in free-running XeCl-excimer lasers.  相似文献   

10.
A self-consistent fluid model, which incorporates density and flux balances of electrons, ions, neutrals and nanoparticles, electron energy balance, and Poisson's equation, is employed to investigate the capacitively coupled silane discharge modulated by dual-frequency electric sources. In this discharge process, nanoparticles are formed by a successive chemical reactions of anion with silane. The density distributions of the precursors in the dust particle formation are put forward, and the charging, transport and growth of nanoparticles are simulated. In this work, we focus our main attention on the influences of the high-frequency and low-frequency voltage on nanoparticle densities, nanoparticle charge distributions in both the bulk plasma and sheath region.  相似文献   

11.
In the plasma of a neon glow discharge under certain conditions two waves (s- and p-wave) are known to exist simultaneously. The transition region between these two kinds of waves is experimentally investigated in the space of plasma parameters. An intermittent behaviour of s- and p-waves dynamics is proved by the analysis of the recorded spatio-temporal patterns of light emitted by plasma. The experimental data are analyzed with the biorthogonal decomposition (BOD) and the empirical mode decomposition (EMD), respectively. The wave states can be described by means of a coupled system of amplitude equations resulting from a hydrodynamic plasma model. Comparison of experimental data and theoretical predictions shows satisfactory agreement. The discrepancies are discussed.  相似文献   

12.
The optical emission spectroscopy of a surface dielectric barrier discharge plasma aerodynamic actuator is investigated with different electrode configurations, applied voltages and driving frequencies. The rotational temperature of N2 (C^3 Ⅱu) molecule is calculated according to its rotational emission band near 380.5 nm. The average electron energy of the discharge is evaluated by emission intensity ratio of first negative system to second positive system of N2. The rotational temperature is sensitive to the inner space of an electrode pair. The average electron energy shows insensitivity to the applied voltage, the driving frequency and the electrode configuration.  相似文献   

13.
In order to check the predictions of 0D-models experimentally, a small coaxial discharge configuration for the generation of homogeneous high pressure glow discharges (diameter 11 mm, length 20 mm) in rare gas halogen excimer laser gas mixtures under accurately controlled conditions has been developed. It uses X-ray preionization and a special pulse-forming network (PFN) delivering fast rising (8 ns) single square pulses (U 0=25 kV; I=300 A; =100 ns). Discharge current and voltage are measured precisely by a capacitive voltage divider and a shunt integrated into the discharge chamber. All circuit data needed for the model calculations have been evaluated. Interferometric and spectroscopic diagnostics of the bulk of the discharge and of the cathode sheath have been performed. First results for Ne/Xe/HCl mixtures are compared with model calculations.  相似文献   

14.
The dynamic nature of the ion wake formed downstream a dust particle immersed in a plasma with flowing ions has been investigated via Particle-in-Cell simulation. It is found that the wake oscillates in time and the motion is characterized by some dominant frequencies. By means of signal processing analysis, three harmonics are detected (two at low frequencies and one at high frequencies) and compared to the characteristic plasma frequencies given by the dispersion relations for ions and electrons. Good matching is found between the high frequency harmonic and the electron plasma frequency, and between the low frequency harmonics and the ion acoustic and ion plasma frequencies.  相似文献   

15.
Beam-plasma interaction is considered in a model of plasma microwave generator: cylindrical waveguide with thin annular plasma and spatially separated thin annular e-beam. Finite external longitudinal magnetic field and dissipation are assumed. Such a configuration is favorable to trigger a new type of dissipative beam instability with more critical, as compared to conventional, inverse proportional dependence of the growth rate on the dissipation.  相似文献   

16.
The specific features of the beam-plasma instability in waveguide under very high beam current are shown analytically. The differences (as compared to conventional case of beam-plasma instability under low beam current) are due to change of physical mechanisms of beam-plasma interaction.  相似文献   

17.
In the experimental part we report on a typical bifurcation scenario of the current distribution in the discharge plane of a planar dielectric barrier discharge system. Increasing the amplitude of the sinusoidal driving voltage after breakdown a large number of dynamic solitary filaments is observed and the subsequent decrease of results in a pronounced hysteresis with decreasing number of filaments. In this way isolated single stationary filaments can be generated. In the theoretical part the latter are modeled by a reaction-drift-diffusion equation that is solved in three dimensional space numerically without any fitting procedure. As a result we obtain well defined stationary filaments of which size an shape essentially are independent of the initial conditions and having a width and an amplitude that agree with experiment rather well. On the basis of the numerical results we consider mechanisms of filament stabilisation. This includes the discussion of the well known surface charges as well as an additional focusing effect of volume charges.  相似文献   

18.
The neutral gas flow profile within a magnetically stabilized coaxial laser gas discharge is analyzed by using a single fluid magnetogasdynamic model. Equations describing the rotational, radial and axial gas transport are solved by using an iterative alternating direction implicit method. Steady state rotational velocities of the order of 20 m/s are found.  相似文献   

19.
We studied the effect of the laser beam focusing geometry on the continuous optical discharge (COD) properties. We used a full two-dimensional radiative gas-dynamic model for the COD, maintained by a vertical CO2 laser beam in free air atmosphere, in the Earth's gravitational field. The model takes into account all of the factors that are of importance in laser-sustained plasma processes, and uses realistic quasi optics to describe the laser radiation propagation. Results are presented for the optical discharge parameters as functions of applied laser power and degree (f-number) to which the laser beam is focused.  相似文献   

20.
郭俊  陆全明 《中国物理快报》2007,24(11):3199-3202
A 2 1/2-dimensional electromagnetic particle-in-cell (PIC) simulation code is used to investigate electron behaviour in collisionless magnetic reconnectfon. The results show that the ion/electron mass ratio (mi/me) almost has no impact on the reconnection rate, however it can significantly affect electron behaviour in the diffusion region. For the case with larger mass ratio, the width of electron current sheet becomes smaller and the outflow region along the separatrix is smaller, hence the peak of the electron outflow speed is essentially larger. Density cavities and the parallel electric field E// along the separatrix can be found in the case with larger mass ratio, which may have significant influences on the acceleration and heating of the electrons near the X point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号