首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bright organic electroluminescent devices are developed using a metal-doped organic layer intervening between the cathode and the emitting layer. The typical device structure is a glass substrate/indium-tin oxide (ITO)/copper phthalocyanine (CuPc)/N,N'-bis-(1-naphthl)-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB)/Tris(8-quinolinolato) aluminum(Alq3)/Mg-doped CuPc/Ag. At a driving voltage of 11 V, the device with a layer of Mg-doped CuPc (1:2 in weight) shows a brightness of 4312cd/m^2 and a current efficiency of 2.52cd/A, while the reference device exhibits 514 cd/m^2 and 1.25 cd/A.  相似文献   

2.
Efficient red polymer light-emitting diodes are fabricated with the single active layer from the blends of poly(N- vinylcarbazole) (PVK) in the presence of 30 wt. % electron-transporting compound 2-(4-biphenylyl)-5-(ptert- butylphenyl)-1,3,4-oxadiazole (PBD) and europium complexes. The polyphenylene functionalized europium com- plex shows an enhanced electroluminescent efficiency due to the large site-isolation effect. For the polyphenylene functionalized europium complex, the maximum external quantum efficiency of 1.90% and luminous efficiency of 2.01 cd A^-1 are achieved with emission peak at 612nm. The maximum brightness is more than 300cd m^-2.  相似文献   

3.
We demonstrate a high eftlciency top-emitting polymer light-emitting diode (TPLED) with chromium (Cr) taking as the anode. The TPLED structure is Cr/poly-3, 4-ethylenedioxythiophene (PEDOT:PSS)/poly [2-(4-3',7'- dimethyloctyloxy)-phenyl]-p-phenylenevinylene) (P-PP V) /Ba/Ag. The Cr ( 100 nm) anode is prepared by sputterdepositing in a vacuum chamber. It is found that the device emissive properties are affected dramatically by the thickness of both PEDOT:PSS and the Ag cathode. Optimized thicknesses of PEDOT:PSS and Ag layer are 60nm and 15nm, respectively. The diode exhibits excellent electroluminescence (EL) properties, such as a turn-on voltage of 3.32 V, luminous eftlciency of 4.41 cd/A and luminance of 6989cd/m^2 at driving voltage of about 9 V.  相似文献   

4.
We investigate the effect of thermal annealing before and after cathode deposition on the stability of polymer light-emitting diodes (PLEDs) based on green fluorescent polyfluorene derivative. The annealed PLEDs exhibit improved charge transport and red-shift emission compared to the as-fabricated device. The stability of the PLEDs is largely enhanced by post-annealing before and after Ca deposition, which is attributed to the enhanced charge transport and the intimate contact between the cathode and the emissive layer.  相似文献   

5.
We introduce a thin LiF layer into tris-8-hydroxyquinoline aluminium (Alq3 ) based bilayer organic light-emitting devices to block hole transport. By varying the thickness and position of this LiF layer in Alq3, we obtain an electroluminescent efficiency increase by a factor of two with respect to the control devices without a LiF blocking layer. By using a 10nm dye doped Alq3 sensor layer, we prove that LiF can block holes and excitons effectively. Experimental results suggest that the thin LiF layer may be a good hole and exciton blocking layer.  相似文献   

6.
Employing an organic dye salt of trans-4-[p-[N-methyl-N-(hydroxymethyl)amino]styryl]-N-methylphridinium tetra\-phenylborate (ASPT) as the active layer, 8-hydrocyquinoline aluminium (Alq3) as the electron transporting layer and N,N’-diphenyl-N,N’-bis(3-methylphenyl)-[1,1’-biphenyl]-4,4’-diamine (TPD) as the hole transporting layer, respectively, we fabricate a multi-layered organic light-emitting diode and observe the colour tunable electroluminescence (EL). The dependence of the EL spectra on the applied voltage is investigated in detail, and the recombination mechanism is discussed by considering the variation of the hole-electron recombination region.  相似文献   

7.
We demonstrate near-infrared organic light-emitting devices with a periodically arranged tris(8-quinolinolato)aluminum (Alq3):copper phthalocyanine (CuPc)/4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminost-yry)-4H-pyran (DCM) multilayer structure. DCM and Alq3 doped with CuPc were periodically deposited. Room-temperature electrophosphorescence was observed at about 1.1 μm due to transitions from the first excited triplet state to the singlet ground state (T1 - S0) of CuPc. In this device, we utilize the overlap between the Q band πr - π^* at about 625nm of the absorption spectra of CuPc and the PL spectra of the DCM. The near-infrared emission intensity of the CuPc-doped Alq3 device with DCM increases about 2.5 times larger than that of the device without DCM. We attribute the efficiency enhancement to the better overlap between the PL spectra of DCM and the absorption spectra of CuPc.  相似文献   

8.
Organic light emitting diodes with an interface of organic acceptor 3-, 4-, 9-,10-perylenetetracarboxylic dianhydride (PTCDA) and donor copper phthalocyanine (CuPc) involved in hole injection are fabricated. As compared to the conventional device using a 5 nm CuPc hole injection layer, the device using an interface of 10nm PTCDA and 5 nm CuPc layers shows much lower operating voltage with an increase of about 46% in the maximum power efficiency. The enhanced device performance is attributed to the efficient hole generation at the PTCDA/CuPc interface. This study provides a new way of designing hole injection.  相似文献   

9.
Effects of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) doping on the hole conductivity of Alq3 layer are measured. In the hole-only device of Alq3, the current densities increase in 1-3 orders of magnitude upon doping with F4TCNQ, suggesting that the doping can effectively enhance the hole-injection and hole- transport ability of Alq3. An organic light-emitting device using an F4TCNQ doped Alq3 layer as the hole- injection and hole-transport layer, and pristine Alq3 as the electron-transport and emitting layer is fabricated and characterized. Bright emission is achieved in the simple OLED with p-doped Alq3 as the hole-transport layer and the intrinsic Alq3 as the electron-transport and emitting layer. The emitting efficiency and brightness of the device are further improved by inserting a thin electron block layer to confine the carrier recombination zone in the middle of the organic layers.  相似文献   

10.
瞿述  ;彭景翠 《中国物理快报》2008,25(8):3052-3055
Conducting polymer polydimethylsiloxane (PDMS) is studied for the high performance electrode of organic electroluminescence devices. A method to prepare the electrode consisting of a SiC thin film and PDMS is investigated. By using ultra thin SiC films with different thicknesses, the organic electroluminescence devices are obtained in an ultra vacuum system with the model device PDMS/SiC/PPV/Alq3, where PPV is poly para-phenylene vinylene and Alq3 is tris(S-hydroxyquinoline) aluminium. The capacitance voltage (C - V), capacitance-frequency (C - F), current-voltage (I - V), radiation intensity-voltage (R - V) and luminance eFficiency-voltage (E - V) measurements are systematically studied to investigate the conductivity, Fermi alignment and devices properties in organic semiconductors. Scanning Kelvin probe measurement shows that the work function of PDMS/SiC anode with a 2.5-nm SiC over layer can be increased by as much as 0.28eV, compared to the conventional ITO anode. The result is attributed to the charge transfer effect and ohmic contacts at the interface.  相似文献   

11.
The performance of organic light-emitting diodes (OLEDs) with thick film is optimized. The alternative vanadium oxide (V2O5) and N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine (NPB) layers are used to enhance holes in the emissive region, and 4,7-dipheny-1,10-phenanthroline (Bphen) doped 8-tris-hydroxyquinoline aluminium (Alq3) is used to enhance electrons in the emissive region, thus ITO/V2O5 (8nm)/NPB (52nm)/V2O5 (8nm)/NPB (52nm)/Alq3 (30 and 45nm)/Alq3:Bphen (30wt%, 30 and 45nm)/LiF (1nm)/Al (120nm) devices are fabricated. The thick-film devices show the turn-on voltage of about 3V and the maximal power efficiency of 4.5lm/W, which is 1.46 times higher than the conventional thin-film OLEDs.  相似文献   

12.
We report an efficient white-light emission based on a single copolymer/InGaN hybrid light-emitting diode. The single copolymer consists of a conjugated polyfluorene backbone by incorporating 2,1,3-benzothiadiazole (BT) and 4,7-bis(2-thienyl)-2,1,3-benzothiadiazole (DBT) as green and red light-emitting units, respectively. For the single copolymer/InGaN hybrid device, the Commission Internationale de 1'Eclairage (CIE) coordinates, color temperature Tc and color rendering index Ra at 20mA are (0.323,0.329), 5960K and 86, respectively. In comparison with the performance of red eopolymer PFO-DBT15 (DOF:DBT=85:15 with DOF being 9'9- dioctylfluorene) and green copolymer PFO-BT35 (DOF:BT=-65:35) blend/InGaN hybrid white devices, it is concluded that the chemically doped copolymer hybridized device shows a higher emission intensity and spectral stability at a high driving current than the polymer blend.  相似文献   

13.
A ZnO homojunction light emitting device was grown on n+ GaAs substrate by pulsed laser deposition. As-doped ZnO film by diffusion of As from the substrate was used for the p-type side and Al-doped ZnO film for the n-type side of the device. A distinct electroluminescence emission consisting of a dominant emission peak at ∼2.5 eV and a weak shoulder centered at ∼3.0 eV was observed at room temperature. The I-V characteristic of the ZnO homojunction showed a good rectifying behavior with a turn-on voltage of ∼4.5 V and a reverse breakdown voltage of ∼9 V.  相似文献   

14.
Blue electroluminescence from SiOx films deposited by electron beam evaporation was observed. This blue emission blueshifted from 450 to 410 nm with increasing applied voltage. The dependences of blue emission on applied voltage, frequency and conduction current were studied. Our experimental data support that blue emission from SiOx films is the result of both recombination of charge carriers injected from opposite electrodes and impact excitation of hot electrons, the recombination of carriers injected is dominant in low and medium electric fields but hot electron impact excitation is dominant under high electric fields.  相似文献   

15.
We report electroluminescence in hybrid ZnO and conjugated polymer poly[2-methoxy-5-(3′, 7′-dimethyloctyloxy)- 1,4-phenylenevinylene] (MDMO-PPV) bulk heterojunction photovoltaic cells. Photoluminescence quenching experimental results indicate that the ultrafast photoinduced electron transfer occurs from MDMO-PPV to ZnO under illumination. The ultrafast photoinduced electron transfer effect is induced because ZnO has an electron affinity a bout 1.2 e V greater than that of MDMO-PP V. Electron 'back transfer' can occur if the interfacial barrier between ZnO and MDMO-PPV can be overcome by applying a substantial electric field. Therefore, electrolumi- nescence action due to the fact that the back transfer effect can be observed in the ZnO:MDMO-PPV devices since a forward bias is applied. The photovoltaic and electroluminescence actions in the same ZnO:MDMO-PPV device can be induced by different injection ways: photoinjection and electrical injection. The devices are expected to provide an opportunity for dual functionality devices with photovoltaic effect and electroluminescence character.  相似文献   

16.
We fabricate the organic photovoltaic (PV) devices, in which 4,4',4"-tris-(2-methylphenylphenylamino)triphenylamine (m-MTDATA) and rare earth (RE) (dibenzoylmethanato)a(bathohenanthroline) (RE(DBM)abath) (RE = Nd or Pr) are used as electron donor and acceptor, and investigate their PV properties. The PV diode fabricated in the optimum processing conditions shows the open-circuit voltage of 1.91 V, short-circuit current of 0.1 mA/cm^2, fill factor of 0.38, and the overall power conversion efficiency of 1.9% when it is irradiated under UV light (4 m W/cm^2). The photocurrent density exhibits an increase of 20% at least when a very thin LiF layer is inserted between the RE-complexes and the A1 cathode. A strong electroluminescence from the interface is also observed and the maximum luminance of a yellow emission resulted from the exciplex is 580 cd/m^2 at 17 V bias.  相似文献   

17.
We have studied the structural, electrical and optical properties of MOS devices, where the dielectric layer consists of a substoichiometric SiOx (x<2) thin film deposited by plasma-enhanced chemical vapor deposition. After deposition the samples were annealed at high temperature (>1000 °C) to induce the separation of the Si and the SiO2 phases with the formation of Si nanocrystals embedded in the insulating matrix. We observed at room temperature a quite intense electroluminescence (EL) signal with a peak at ∼850 nm. The EL peak position is very similar to that observed in photoluminescence in the very same device, demonstrating that the observed EL is due to electron–hole recombination in the Si nanocrystals and not to defects. The effects of the Si concentration in the SiOx layer and of the annealing temperature on the electrical and optical properties of these devices are also reported and discussed. In particular, it is shown that by increasing the Si content in the SiOx layer the operating voltage of the device decreases and the total efficiency of emission increases. These data are reported and their implications discussed. Received: 31 August 2001 / Accepted: 3 September 2001 / Published online: 17 October 2001  相似文献   

18.
Polarons and bipolarons are main carriers in conducting polymers. It is shown that a bipolaron can open a channel of electroluminescence, which does not involve a triplet exciton, and can enhance the efficiency of electroluminescence. The dynamics of this channel is simulated.  相似文献   

19.
A novel phosphorescent organic white-light-emitting device (WOLED) with contiguration of ITO/NPB/CBP: TBPe:rubrene/Zn(BTZ)2:Ir(piq)2(acac)/Zn(BTZ)2/Mg:Ag is fabricated successfully, where the phosphorescent dye bis (1-(phenyl)isoquinoline) iridium (Ⅲ) acetylanetonate (Ir(piq)2 (acac)) doped into bis-(2-(2-hydroxyphenyl) benzothiazole)zinc (Zn(BTZ)2) (greenish-blue emitting material with electron transport character) as the red emitting layer, and fluorescent dye 2,5,8,11-tetra-tertbutylperylene (TBPe) and 5,6,11,12-tetraphenyl-naphthacene (rubrene) together doped into 4,4'-N,N'-dicarbazole-biphenyl (CBP) (ambipolar conductivity material) as the blue-orange emitting layer, respectively. The two emitting layers are sandwiched between the hole-transport layer N ,N'-biphenyl-N , N'-bis (1-naph thyl)-(1,1'-biphenyl)-4, 4 Cdiamine (NP B) and electron-transport layer (Zn(BTZ)2 ) The optimum device turns on at the driving voltage of 4.5 V. A maximum external quantum efficiency of 1.53%. and brightness 15000 cd/m^2 are presented. The best point of the Commission Internationale de 1'Eclairage (CIE) coordinates locates at (0.335, 0.338) at about 13 V. Moreover, we also discuss how to achieve the bright pure white light through optimizing the doping concentration of each dye from the viewpoint of energy transfer process.  相似文献   

20.
Electroluminescence performances from a tuning biscyclometlated iridium complex with benzyl group are demonstrated in double-layered polymer light-emitting devices (PLEDs) using a blend of poly(9,9-dioctylfluorene) and 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole as a host matrix. Blue-green electrophosphorescent emission with a peak at 521 nm and a shoulder at 492nm was observed. The highest luminance efficiency of 4.8cd/A at current density of 0. 56 mA/cm^2 and a maximum luminance of 1944 cd/m^2 at 217.6 mA/cm^2 were achieved in the devices at the dopant concentration of 8%. The luminous performance of the devices becomes better with increasing dopant concentrations from 1% to 8%. This implies that the concentration quenching of this iridium complex with benzyl group can be efficiently inhibited in the devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号