首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
熊永臣  王为忠  杨俊涛  黄海铭 《中国物理 B》2015,24(2):27501-027501
The quantum phase transition and the electronic transport in a triangular quantum dot system are investigated using the numerical renormalization group method.We concentrate on the interplay between the interdot capacitive coupling V and the interdot tunnel coupling t.For small t,three dots form a local spin doublet.As t increases,due to the competition between V and t,there exist two first-order transitions with phase sequence spin-doublet-magnetic frustration phase-orbital spin singlet.When t is absent,the evolutions of the total charge on the dots and the linear conductance are of the typical Coulomb-blockade features with increasing gate voltage.While for sufficient t,the antiferromagnetic spin correlation between dots is enhanced,and the conductance is strongly suppressed for the bonding state is almost doubly occupied.  相似文献   

2.
We demonstrate the existence of ferrimagnetic and ferromagnetic phases in a spin phase diagram of coupled lateral quantum dot molecules in the quantum Hall regime. The spin phase diagram is determined from the Hartree-Fock configuration interaction method as a function of electron number N and magnetic field B. The quantum Hall ferrimagnetic phase corresponds to spatially imbalanced spin droplets resulting from strong interdot coupling of identical dots. The quantum Hall ferromagnetic phases correspond to ferromagnetic coupling of spin polarization at filling factors between nu=2 and nu=1.  相似文献   

3.
We study the thermoelectric transport through a double-quantum-dot system with spin-dependent interdot coupling and ferromagnetic electrodes by means of the non-equilibrium Green’s function in the linear response regime.It is found that the thermoelectric coefficients are strongly dependent on the splitting of the interdot coupling,the relative magnetic configurations,and the spin polarization of leads.In particular,the thermoelectric efficiency can reach a considerable value in the parallel configuration when the effective interdot coupling and the tunnel coupling between the quantum dots and the leads for the spin-down electrons are small.Moreover,the thermoelectric efficiency increases with the intradot Coulomb interaction increasing and can reach very high values at appropriate temperatures.In the presence of the magnetic field,the spin accumulation in the leads strongly suppresses the thermoelectric efficiency,and a pure spin thermopower can be obtained.  相似文献   

4.
We theoretically study the thermoelectric transport properties through a triple quantum dots (QDs) device with the central QD coupled to a ferromagnetic lead, a superconducting one, and two side QDs with spin-dependent interdot tunneling coupling. The thermoelectric coefficients are calculated in the linear response regime by means of nonequilibrium Green's function method. The thermopower is determined by the single-electron tunneling processes at the edge of superconducting gap. Near the outside of the gap edge the thermopower is enhanced while thermal conductance is suppressed, as a result, the charge figure of merit can be greatly improved as the gap appropriately increases. In the same way, charge figure of merit also can be greatly improved near the outside of the gap edge by adjusting interdot tunneling coupling and asymmetry coupling of the side QDs to central QD. Moreover, the appropriate increase of the interdot tunneling splitting and spin polarization of ferromagnetic lead not only can improve charge thermopower and charge figure of merit, but also can enhance spin thermopower and spin figure of merit. Especially, the interdot tunneling splitting scheme provides a method of controlling charge (spin) figure merit by external magnetic field.  相似文献   

5.
The Kondo effect and the Andreev reflection tunneling through a normal (ferromagnet)-double quantum dots-superconductor hybrid system is examined in the low temperature by using the nonequilibrium Green's function technique in combination with the slave-boson mean-field theory. The interplay of the Kondo physics and the Andreev bound state physics can be controlled by varying the interdot hopping strength. The Andreev differential conductance is mainly determined by the competition between Kondo states and Andreev states. The spin-polarization of the ferromagnetic electrode increases the zero-bias Kondo peak. The spin-flip scattering influences the Kondo effect and the Andreev reflection in a nontrivial way. For the ferromagnetic electrode with sufficiently large spin polarization, the negative Andreev differential conductance is found when the spin flip strength in the double quantum dots is sufficiently strong.  相似文献   

6.
Y.S. Liu  X.F. Yang  Y.J. Xia 《Physics letters. A》2008,372(18):3318-3324
In this Letter, we studied the electronic transport through a parallel-coupled double quantum dot (DQD) molecule including impurity effects at zero temperature. The linear conductance can be calculated by using the Green's function method. An obvious Fano resonance arising from the impurity state in the quantum dot is observed for the symmetric dot-lead coupling structure in the absence of the magnetic flux through the quantum device. When the magnetic flux is presented, two groups of conductance peaks appear in the linear conductance spectra. Each group is decomposed into one Breit-Wigner and one Fano resonances. Tuning the system parameters, we can control effectively the shapes of these conductance peaks. The Aharonov-Bohm (AB) oscillation for the magnetic flux is also studied. The oscillation period of the linear conductance with π, 2π or 4π may be observed by tuning the interdot tunneling coupling or the dot-impurity coupling strengths.  相似文献   

7.
We theoretically investigate the properties of the ground state of the strongly correlated T-shaped double quantum dots embedded in an Aharonov-Bohm ring in the Kondo regime by means of the one-impurity Anderson Hamiltonian. It is found that in this system, the persistent current depends sensitively on the parity and size of the ring. With the increase of interdot coupling, the persistent current is suppressed due to the enhancing Fano interference weakening the Kondo effect. Moreover, when the spin of quantum dot embedded in the Aharonov- Bohm ring is screened, the persistent current peak is not affected by interdot coupling. Thus this model may be a new candidate for detecting Kondo screening cloud.  相似文献   

8.
We report low-temperature conductance measurements in the Coulomb blockade regime on two nominally identical tunnel-coupled quantum dots in parallel defined electrostatically in the two-dimensional electron gas of a GaAs/AlGaAs heterostructure. At low interdot tunnel coupling we find that the conductance measured through one dot is sensitive to the charge state of the neighboring dot. At larger interdot coupling the conductance data reflect the role of quantum charge fluctuations between the dots. As the interdot conductance approaches 2e2/h, the coupled dots behave as a single large dot.  相似文献   

9.
We study electron tunnelling through two small ferromagnetic dots. Quantum charge fluctuations and interdot coupling cause each Coulomb peak of conductance at zero interdot coupling to split. The interdot tunnel coupling depends on the relative orientation of magnetizations of the two dots, leading to different splitting energies of the Coulomb peaks in parallel and antiparallel magnetization alignments. As a result, a very large tunnelling magnetoresistance occurs near the Coulomb peaks, and its sign may be either positive or negative.  相似文献   

10.
吴绍全  方栋开  赵国平 《物理学报》2015,64(10):107201-107201
从理论上研究了平行双量子点系统中的电子关联效应对该系统磁输运性质的影响. 基于广义主方程方法, 计算了通过此系统的电流、微分电导和隧穿磁阻. 计算结果表明: 电子自旋关联效应可以促发一个很大的隧穿磁阻, 而电子库仑关联效应不仅可以压制电子自旋关联效应, 还可以导致负隧穿磁阻和负微分电导的出现. 对相关的基本物理问题进行了讨论.  相似文献   

11.
By means of the generalized static replica symmetric spin glass theory, a quantum HeisenbergS=1/2 spin glass model with the infinite-ranged random Dzyaloshinskii-Moriya (DM) interaction and ferromagnetic coupling is investigated. The dependence of entropy, specific heat, susceptibility and the corresponding order parameters on temperature is studied numerically for different ferromagnetic interactions and fixed anisotropy. Two spin glass phases has been found including transverse and mixed spin glass phases. It has been shown that the local susceptibility exhibits double-cusp features for different ferromagnetic coupling (J 0). Phase transition poins are found in the specific heat-temperature plane at various ferromagnetic coupling values. Additionally, the dependence of the spontaneous moment on temperature is calculated.  相似文献   

12.
迟锋  孙连亮  黄玲  赵佳 《中国物理 B》2011,20(1):17303-017303
We study the spin-dependent transport through a one-dimensional quantum ring with taking both the Rashba spin--orbit coupling (RSOC) and ferromagnetic leads into consideration. The linear conductance is obtained by the Green's function method. We find that due to the quantum interference effect arising from the RSOC-induced spin precession phase and the difference in travelling phase between the two arms of the ring, the conductance becomes spin-polarized even in the antiparallel magnetic configuration of the two leads, which is different from the case in single conduction channel system. The linear conductance, the spin polarization and the tunnel magnetoresistance are periodic functions of the two phases, and can be efficiently tuned by the structure parameters.  相似文献   

13.
Using an equation-of-motion technique,we theoretically study the Kondo-Fano effect in the T-shaped double quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian.We calculate the density of states in this system by solving Green function.Our results reveal that the density of states show some noticeable characteristics not only depending upon the interdot coupling t ab,the energy level ε d1 of the side coupled quantum dot QD b,and the relative angle θ of magnetic moment M,but also the asymmetry parameter α in ferromagnetic leads and so on.All these parameters greatly influence the density of states of the central quantum dot QD a.This system is a possible candidate for spin valve transistors and may have potential applications in the spintronics.  相似文献   

14.
The properties of the spin system in the FCC lattice described by the Heisenberg model (s=1/2) with antiferromagnetic interactions between the nearest neighbors were studied. It was shown within the framework of spin-wave theory that long-range antiferromagnetic order was absent because of frustration of exchange coupling and transverse quantum spin fluctuations. The system was in the quantum spin liquid state. A method for describing it within linear second-order theory with self-consistently calculated parameters was suggested. It was proved that the ground spin liquid state was singlet. The thermodynamic properties of the spin liquid in the whole temperature range and the character of spatial spin correlations, which had alternating signs and a finite correlation length, were determined. The theory was constructed based on the method of two-time Green temperature functions.  相似文献   

15.
The electronic (quantum) transport in a NG/FB/FG tunnel junction (where NG, FB and FG are a normal graphene layer, a ferromagnetic barrier connected to a gate and a ferromagnetic graphene layer, respectively) is investigated. The motions of the electrons in the graphene layers are taken to be governed by the Dirac Equation. Parallel (P) and antiparallel alignment (AP) of the magnetizations in the barrier and in the ferromagnetic graphene are considered. Our work focuses on the oscillation of the electrical conductance (Gq), of the spin conductance (Gs) and of the tunneling magneto resistance (TMR) of this magnetic tunnel junction. We find that, the quantum modulation due to the effect of the exchange field in FB will be seen in the plots the conductance and of the TMR as functions of the thickness of ferromagnetic barrier (L). The period of two multiplied sinusoidal terms of the modulation are seen to be controlled by varying the gate potential and the exchange field of the FB layer. The phenomenon, a quantum beating, is built up with two oscillating spin conductance components which have different periods of oscillation related to the splitting of Dirac's energies in the FB region. The amplitudes of oscillations of Gq, Gs and TMR are not seen to decrease as the thickness increases. The decaying behaviors seen in the conventional transport through an insulator do not appear.  相似文献   

16.
We report carrier spin dynamics in highly uniform self-assembled InAs quantum dots and the observation of antiferromagnetic coupling between semiconductor quantum dots. The spin relaxation times in the ground state and the first excited state were measured to be 1.0 and 0.6 ns, respectively, without the disturbance of inhomogeneous broadening. The measured spin relaxation time decreases rapidly from 1.1 ns at 10 K to 200 ps at 130 K. This large change in the spin relaxation time is well-explained in terms of the mechanism of acoustic phonon emission. In coupled quantum dots, the formation of antiferromagnetic coupling is directly observed. Electron spins are found to flip at 80 ps after photoexcitation via the interdot exchange interaction. The antiferromagnetic coupling exists at temperatures lower than 50–80 K. A model calculation based on the Heitler–London approximation supports the finding that the antiferromagnetic coupling is observable at low temperature. These carrier spin features in quantum dots are suitable for the future quantum computation.  相似文献   

17.
We establish a connection between ground states of local quantum Hamiltonians and thermal states of classical spin systems. For any discrete classical statistical mechanical model in any spatial dimension, we find an associated quantum state such that the reduced density operator behaves as the thermal state of the classical system. We show that all these quantum states are unique ground states of a universal 5-body local quantum Hamiltonian acting on a (polynomially enlarged) qubit system on a 2D lattice. The only free parameters of the quantum Hamiltonian are coupling strengths of two-body interactions, which allow one to choose the type and dimension of the classical model as well as the interaction strength and temperature. This opens the possibility to study and simulate classical spin models in arbitrary dimension using a 2D quantum system.  相似文献   

18.
Electronic structures of double hexagonal close-packed americium and the (0001) surface have been studied via full-potential all-electron density-functional calculations with a mixed APW+lo/LAPW basis. The electronic and geometric properties of bulk dhcp Am as well as quantum size effects in the surface energies and the work functions of the dhcp Am (0001) ultra thin films up to seven layers have been examined at nonmagnetic, ferromagnetic, and antiferromagnetic configurations with and without spin orbit coupling. The anti-ferromagnetic state including spin-orbit coupling is found to be the ground state of dhcp Am with the 5f electrons primarily localized. Our results show that both magnetic configurations and spin-orbit coupling play important roles in determining the equilibrium lattice constant, the bulk modulus as well as the localized feature of 5f electrons for dhcp Am. Our calculated equilibrium lattice constant and bulk modulus at the ground state are in good agreement with the experimental values respectively. The work function of dhcp Am (0001) 7-layer surface at the ground state is predicted to be 2.90 eV. The surface energy for dhcp Am (0001) semi-infinite surface energy at the ground state is predicted to be 0.84 J/m2. Quantum size effects are found to be more pronounced in work functions than in surface energies.  相似文献   

19.
We report a measurement of linear conductance through a series double dot as a function of the total double dot charge and the charge difference for interdot tunnel conductances between zero and one mode. The dots are defined by ten independently tunable electrostatic gates on the surface of a GaAs/AlGaAs heterostructure to allow separate adjustment of dot charge and interdot conductance. For weak interdot tunneling the measured double dot conductance agrees with a transport model in which each dot is individually governed by Coulomb blockade theory. As interdot tunnel conductance increases toward one mode, the measured conductance peak positions and shapes indicate both a relaxation of the charge quantization condition for individual dots and quantum mechanical charge sharing between dots. The results are in quantitative agreement with many body charge fluctuation theory.  相似文献   

20.
We have investigated few-body states in vertically stacked quantum dots. Because of a small interdot tunneling rate, the coupling in our system is in a previously unexplored regime where electron-hole exchange plays a prominent role. By tuning the gate bias, we are able to turn this coupling off and study a complementary regime where total electron spin is a good quantum number. The use of differential transmission allows us to obtain unambiguous signatures of the interplay between electron and hole-spin interactions. Small tunnel coupling also enables us to demonstrate all-optical charge sensing, where a conditional exciton energy shift in one dot identifies the charging state of the coupled partner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号