首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In early pharmaceutical product development, an investigational drug candidate is typically dosed to various species for toxicological and pharmacokinetic studies. Most of these studies require multiple analytical methods that have to be validated with good laboratory practice (GLP) prior to the application in regulated studies. Usually, these analytical methods are developed in either a serial or parallel approach. For either approach, the development of multiple analytical methods takes tremendous work from scientists and instruments, and thus is not cost-effective. In this respect, a new strategy has been developed for simultaneous GLP method development using liquid chromatographic separation and tandem mass spectrometric detection. This high-throughput approach allows system suitability, carryover, calibration curve, accuracy, precision, matrix effect and selectivity to be evaluated in one 96-well plate. The strategy has been successfully implemented for multiple investigational drug candidates at Abbott Laboratories. The methods developed with this strategy are accurate, precise, selective, robust and matrix-independent. As an example, ABT-279 was used to demonstrate the feasibility of this strategy.  相似文献   

2.
Studies have been performed assessing the feasibility and characterizing the automation of solid-phase microextraction (SPME) on a multi-well plate format. Four polycyclic aromatic hydrocarbons (PAHs), naphthalene, fluorene, anthracene and fluoranthene, were chosen as test analytes to demonstrate the technique due to their favorable partition coefficients, K(fw), between polydimethylsiloxane (PDMS) extraction phases and water. Four different PDMS configurations were investigated regarding their suitability. These included (i) a PDMS membrane; (ii) a multi-fiber device containing lengths of PDMS-coated flexible wire; (iii) a stainless steel pin covered with silicone hollow fiber membrane and (iv) commercial PDMS-coated flexible metal fiber assemblies. Of these configurations, the stainless steel pin covered with silicone tubing was chosen as a robust alternative. An array of 96 SPME devices that can be placed simultaneously into a 96-well plate was constructed to demonstrate the high-throughput potential when performing multiple microextractions in parallel. Different agitation methods were assessed including magnetic stirring, sonication, and orbital shaking at different speeds. Orbital shaking whilst holding the SPME device in a stationary position provided the optimum agitation conditions for liquid SPME. Once the analytes had been extracted, desorption of the analytes into an appropriate solvent was investigated. Liquid-phase SPME and solvent desorption on the multi-well plate format is shown to be a viable alternative for automated high-throughput SPME analysis compatible with both gas- and liquid-chromatography platforms.  相似文献   

3.
Yamashita T  Yamamoto E  Kushida I 《Talanta》2011,84(3):809-813
In this study, a frozen water phase method for log D measurement using a 96-well plate was developed. In the case of log D measurement of compounds, the problem of octanol contamination often occurs; in lipophilic compounds, the concentration of the octanol phase is much higher than that of the water phase. When the water phase is separated from the octanol phase, a small amount of octanol phase contamination could strongly influence the concentration of the water phase. To avoid this problem, the frozen water phase method was developed. The water phase was frozen in liquid nitrogen and then the unfrozen octanol phase was removed. To remove the portion of the octanol remaining on the frozen water phase, the surface of the frozen water phase was washed with octanol and water/ethanol (50/50, v/v). The validity of the method was confirmed by results of commercially available drugs at the log D range from 0 to 4. Further, it was found that this method had the ability to evaluate the pH-log D profile of compounds in the range from pH 2 to pH 12. As a result, we developed the convenient and accurate method that is effective in preventing contamination with a wide dynamic range.  相似文献   

4.
Chirality plays a fundamental role in determining the pharmacodynamic and pharmacokinetic properties of drugs, and contributes significantly to our understanding of the mechanisms that lie behind biorecognition phenomena. Circular dichroism spectroscopy is the technique of choice for determining the stereochemistry of chiral drugs and proteins, and for monitoring and characterizing molecular recognition phenomena in solution. The role of chirality in our understanding of recognition phenomena at the molecular level is discussed here via several selected systems of interest in the drug discovery and development area. The examples were selected in order to underline the utility of circular dichroism in emerging studies of protein–protein interactions in biological context. In particular, the following aspects are discussed here: the relationship between stereochemistry and pharmacological activity—stereochemical characterization of new leads and drugs; stereoselective binding of leads and drugs to target proteins—the binding of drugs to serum albumins; conformational transitions of peptides and proteins of physiological relevance, and the stereochemical characterization of therapeutic peptides.  相似文献   

5.
Over the past 15 years the privileged structure concept has emerged as a fruitful approach to the discovery of novel biologically active molecules. Privileged structures are molecular scaffolds with versatile binding properties, such that a single scaffold is able to provide potent and selective ligands for a range of different biological targets through modification of functional groups. In addition, privileged structures typically exhibit good drug-like properties, which in turn leads to more drug-like compound libraries and leads. The net result is the production of high quality leads that provide a solid foundation for further development. The identification of privileged structures will be discussed, emphasizing the importance of understanding the structure-target relationships that confer "privileged" status. This understanding allows privileged structure based libraries to be targeted at distinct target families (e.g. GPCRs, LGIC, enzymes/kinases). Privileged structures have been successfully exploited across and within different target families and promises to be an effective approach to the discovery and optimization of novel bioactive molecules. The application of the privileged structure approach, both in traditional medicinal chemistry and in the design of focused libraries, will be discussed with the aid of illustrative examples.  相似文献   

6.
A method for high throughput screening of Green Fluorescent Proteins carrying metal binding tags in bacteria was developed. A random four amino acids tag-peptide library was successfully generated in E. coli. A 96-microtiter plate assembled with metal-iminodiacetic acid small cryogel columns was used for library screening. For the first time we were able to simultaneously screen a metal binding peptide tags library obtained from E. coli against different metal ions. From screening 25 different tags, three clones were able to bind to all metal ions studied (Ni2+, Zn2+, Co2+ and Cd2+). It was clearly demonstrated that the new construct could facilitate the screening of large peptide libraries.  相似文献   

7.
A novel high-throughput device based on 96-micro-solid phase extraction (96-μ-SPE) system was constructed for multiresidue determination of nine pesticides in aquatic samples. The extraction procedure was performed on a commercially available 96-well plate system. The extraction module consisted of 96 pieces of 1 cm × 3 cm of cylindrically shaped stainless steel meshes. The prepared meshes were fixed in a home-made polytetrafluoroethylene-based constructed ninety-six holes block for possible simultaneous immersion of meshes into the center of individual wells. Dodecyl methacrylate and ethylene glycol dimethacrylate was copolymerized as a monolithic polymer and placed in the cylindrically shaped stainless steel meshes as extracting medium. A volume of 1 mL of the aquatic sample was transferred into the 96-well plate and the 96-μ-SPE device was applied for the extraction of the selected pesticides. Subsequently, the extracted analytes were analyzed by gas chromatography–mass spectrometry. Influential parameters such as polymer synthesis conditions, sorbent-to-sorbent reproducibility, ionic strength and extraction time were optimized. Intra and inter-sorbent reproducibility on 96-μ-SPE device were evaluated and results revealed that extraction yields are rather similar. Limits of detection were below 4 μg L−1 and the coefficient of determination was satisfactory (r2 > 0.99) for all the studied analytes. The developed method was successfully applied to the extraction and determination of the selected pesticides in surface water samples.  相似文献   

8.
Hyphenated HPLC-NMR and its applications in drug discovery   总被引:2,自引:0,他引:2  
Hyphenated HPLC-NMR is a fast growing technology, allowing rapid and detailed structural characterization of unknown mixtures. The technical aspects of the technology are reviewed on the basis of system configuration, operation, solvent suppression, HPLC and NMR optimization, and detection. The combined use of HPLC-NMR and HPLC-MS is also described and discussed. Various applications of HPLC-NMR and integrated HPLC-NMR-MS in drug discovery, especially in the separation and structure elucidation of drug impurities, reaction mixtures, degradation products, in vitro and in vivo metabolites, and combinatorial library samples, are illustrated.  相似文献   

9.
Improvement of in-gel digestion efficiency is highly desirable for one- or two-dimensional gel electrophoretic separation and mass spectrometric (MS) analysis in proteomics, because the resultant increases in sequence coverage and MS signal intensity lead to higher confidence in protein identification. Here an optimized in-gel digestion system, in combination with thin-gel separation and negative staining in a high-throughput format using 96-well plates, is described. The combination of negative staining and protein separation on a 0.9 mm thick gel showed a clear improvement in in-gel digestion efficiency in comparison with the more typical protocols such as the combination of silver staining and a 1.0 mm gel. In addition, the use of 96-well plates to increase throughput did not decrease the efficiency of this strategy when the stirring of the gel pieces in processes such as destaining, washing, gel-shrinking and peptide extraction was performed by sonication instead of shaking the plates. This procedure was optimized and applied to identify proteins of the postsynaptic density fraction; 105 proteins were identified after SDS-PAGE separation.  相似文献   

10.
11.
A high-throughput solid-phase microextraction (SPME) on 96-well plate together with gas chromatography–mass spectrometry (GC–MS) was developed for the determination of some selected pesticides in cucumber samples. Pieces with the length of 1.0 cm of silicon tubing were precisely prepared and then coated on the end part of stainless steel wires. The prepared fibers were positioned in a home-made polytetrafluoroethylene (PTFE)-based constructed ninety-six holes block to have the possibility of simultaneous immersion of the SPME fibers into the center of individual wells. Pesticides such as diazinon, penconazol, tebuconazol, bitertanol, malathion, phosalone and chlorpyrifos-methyl were selected for their highly application in cucumber field. The performances of the SPME fibers, such as intra and inter-fibers reproducibility, were evaluated and the results showed a good similarity in extraction yields. A volume of 1 mL of the aquatic supernatant of the cucumber samples was transferred into the 96-well plate and the array of SPME fibers was applied for the extraction of the selected pesticides. The important parameters influencing the whole extraction process including, organic solvent percent, salt addition, dilution factor, stirring rate and extraction time were optimized. The inter- and intra-day RSD% were found to be less than 15.4%. Limits of detection (LOD) and limits of quantification (LOQ) were below 60 and 180 μg kg−1, respectively. The coefficient of determination was satisfactory (r2 > 0.99) for all the studied analytes. The developed method was successfully applied to the monitoring of several samples gathered from local markets.  相似文献   

12.
Creating first-in-class medications to treat human disease is an extremely challenging endeavor. While genome sequencing and genetics are making direct connections between mutations and human disorders at an unprecedented rate, matching molecular targets with a suitable therapeutic indication must ultimately be achieved by pharmacology. Here, we discuss how the integration of chemical proteomic platforms (such as activity-based protein profiling) into the earliest stages of the drug discovery process has the potential to greatly expand the scope of proteins that can be pharmacologically evaluated in living systems, and, through doing so, promote the identification and prioritization of new therapeutic targets.  相似文献   

13.
Small molecules and antibodies are normally considered separately in drug discovery, except in the case of covalent conjugates. We unexpectedly discovered several small molecules that could inhibit or enhance antibody–epitope interactions which opens new possibilities in drug discovery and therapeutic modulation of auto-antibodies. We first discovered a small molecule, CRANAD-17, that enhanced the binding of an antibody to amyloid beta (Aβ), one of the major hallmarks of Alzheimer''s disease, by stable triplex formation. Next, we found several small molecules that altered antibody–epitope interactions of tau and PD-L1 proteins, demonstrating the generality of this phenomenon. We report a new screening technology for ligand discovery, screening platform based on epitope alteration for drug discovery (SPEED), which is label-free for both the antibody and small molecule. SPEED, applied to an Aβ antibody, led to the discovery of a small molecule, GNF5837, that inhibits Aβ aggregation and another, obatoclax, that binds Aβ plaques and can serve as a fluorescent reporter in brain slices of AD mice. We also found a small molecule that altered the binding between Aβ and auto-antibodies from AD patient serum. SPEED reveals the sensitivity of antibody–epitope interactions to perturbation by small molecules and will have multiple applications in biotechnology and drug discovery.

A screening platform based on epitope alteration for drug discovery (SPEED).  相似文献   

14.
Proteomics: applications and opportunities in preclinical drug development   总被引:6,自引:0,他引:6  
Steiner S  Witzmann FA 《Electrophoresis》2000,21(11):2099-2104
Advances in DNA sequencing and the near-term availability of whole genome sequences for several pharmaceutically relevant organisms promise to dramatically alter the breadth and scale of high-throughput proteomic studies. The substantial amount of literature is available in the public domain, demonstrate the potential of proteomics in the preclinical phases of pharmaceutical development. Over the next few years, it is anticipated that functional genomics and proteomics will have major impacts on the clinical phases of drug development. Expected benefits are earlier proof-of-concept studies in man and increased efficiency of clinical trials through the availability of biologically relevant markers for drug efficacy and safety.  相似文献   

15.
The enormous amount of information generated through sequencing of the human genome has increased demands for more economical and flexible alternatives in genomics, proteomics and drug discovery. Many companies and institutions have recognised the potential of increasing the size and complexity of chemical libraries by producing large chemical libraries on colloidal support beads. Since colloid-based compounds in a suspension are randomly located, an encoding system such as optical barcoding is required to permit rapid elucidation of the compound structures. We describe in this article innovative methods for optical barcoding of colloids for use as support beads in both combinatorial and non-combinatorial libraries. We focus in particular on the difficult problem of barcoding extremely large libraries, which if solved, will transform the manner in which genomics, proteomics and drug discovery research is currently performed.  相似文献   

16.
17.
Heteromultifunctional scaffolds that harness sequential "click" reactions will find significant utility in the areas of chemical biology and chemically enabled/enhanced biotherapeutics ("chemologics"). Here we review the existing synthetic technologies that illustrate the considerable potential of the field.  相似文献   

18.
Fipronil, a phenylpyrazole insecticide introduced for pest control on a broad range of crops, undergoes a reinforcement of the regulation within the European Union (2007/52/EC directive) due to its potential effects on environment and human health. In order to assess the plasmatic concentrations of fipronil residues (sulfone, sulfide, fipronil, desulfinyl and amide) in ovine, a methodology based on gas chromatography coupled with tandem mass spectrometry (GC-MS/MS) was developed and validated according to the European standard (2002/657/EC). The proposed method allows a large number of samples to be treated concurrently (n=80) using a reduced sample amounts (0.2 mL), and consents to reach a level of quantification of 0.1 pg microL(-1). The sample preparation consisted of a single solid-phase extraction (SPE) purification on a 96-well plate filled with a styrene-divinyl-benzene phase. Linearity was demonstrated all along the investigated range of concentrations, i.e. from 0.25 to 2000 pg microL(-1), with coefficient of determination (R(2)) from 0.977 to 0.994, depending on target analytes. Calculated decision limit (CCalpha) and detection capability (CCbeta) for fipronil, sulfone and sulphide were in the range 0.05-0.16 and 0.28-0.73 pg microL(-1) respectively.  相似文献   

19.
Advanced glycation end-products (AGEs) are involved in the pathogenesis of numerous affections such as diabetes and neurological diseases. AGEs are also implied in various changes in tissues and organs. Therefore, compounds able to break them or inhibit their formation may be considered as potential drugs, dietary supplements, or bioactive additives. In this study, we have developed a rapid and reliable (Z′ factor calculation) anti-AGEs activity screening based on the overall fluorescence of AGEs. This method was successfully evaluated on known AGEs inhibitors and on a small library of natural compounds, yielding coherent results when compared with literature data.  相似文献   

20.
基于96孔板与拉曼光谱的发酵乙醇高通量快速检测   总被引:1,自引:0,他引:1  
发酵液中乙醇含量是实验室研究和工业生产的必检项目.应用拉曼光谱在倒置显微镜上建立一种用96孔板高通量快速检测发酵液乙醇含量的新方法,通过最小二乘法拟合标准乙醇溶液与内标物的拉曼信号比值,得到回归方程,根据回归方程计算乙醇溶液和发酵液中的乙醇含量,与气相色谱法的检测结果进行对比.用本方法检测了菌株筛选、三角瓶发酵和500 L发酵罐发酵过程的乙醇含量.t-检验表明,与气相色谱法结果吻合较好(p=0.05).本方法只需要10~15 s的拉曼光谱收集时间,应用自编程序实时读取检测值,准确度高;结合96孔板可以实现大量样品的实时快速检测.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号