首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of trans-HM(PEt3)2 (CCC6H5) (M = Pt, Pd) with dimethyl acetylenedicarboxylate has given rans-{(CH3O2C)HC=C(CO2CH3)}M(PEt3)2 (CCC6H5). It is suggested that oligomerization of a terminal acetylene proceeds through an alkynylalkenyl derivative.  相似文献   

2.
Platinum(IV) halides formed complexes of the type PtL2X4 [L=1-vinyl imidazole (1,-VIm), 1-methylimidazole (1-MeIm), 1,2-dimethylimidazole (1,2-Me2Im), 1-vinyl-2-methylimidazole (1-V-2-MeIm), 2-methylimidazole (2-MeIm), 2-ethylimidazole (2-EtIm), 2-isopropylimidazole (2-i-PrIm), and 4-methylimidazole (4-MeIm); X=Cl, Br] in neutral aqueous solution. The 1-n-butylimidazole (1-n-BuIm) ligand yielded only (LH)2PtX6 compound in the same medium. The compounds were characterised by elemental analyses, IR, UV-VIS and 1HNMR spectra.  相似文献   

3.
The reaction of a dichloromethane solution of a mixture of cis,trans-[PtCl2(SMe2)2] with a tetrahydrofuran solution of SnBr2 resulted in oxidation of platinum(II) with halogen exchange producing cis,trans-[PtBr4(SMe2)2]. Reaction of a mixture of cis,trans-[PtCl2(SEt2)2], potassium tetrachloroplatinate(II) or potassium hexachloroplatinate(IV) with SnBr2 in hydrochloric acid solution resulted in formation of predominantly anionic five-coordinate trichlorostannyl platinum(II) complexes. Reaction of potassium tetrabromoplatinate(II) with SnCl2 in hydrobromic acid in the presence of tetraphenylphosphonium bromide affords cis-[PPh4]2[PtBr2(SnBr3)2]. The insertion of SnCl2 into Pt–Cl bond of platinum(II) complexes cis-[PtCl2(L2)] {L2 = (PPh3)2; (PMe3)2; {P(OMe)3}2; dppm (bis(diphenylphosphino)methane); dppa (bis(diphenylphosphino)amine); and dppe (1,2-bis(diphenylphosphino)ethane)} is described.  相似文献   

4.
Summary The i.r. spectra (4000-90 cm–1) of the [Pt(Him)4]X2 complexes (Him = imidazole, X = Cl, Br or I) andcis- andtrans-[Pt(Him)2X2] (X = Cl, Br, I or NO2) and their D3-labelled analogues have been determined. The distinction between the ring and C-H (or N-H) modes of imidazole is based on the relative shifts which these bands undergo on D3-labelling. Assignments, based on the effects of imidazole deuteriation and halide substitution, are provided for the v(Pt-Him) and v(Pt-X) modes.  相似文献   

5.
Iminoacylation of acetone oxime Me(2)C[double bond, length as m-dash]NOH upon reaction with trans-[PtCl(2)(NCCH(2)CO(2)Me)(2)] and [2 + 3] cycloaddition of acyclic nitrone (-)O(+)N(Me) = C(H)(C(6)H(4)Me-4) to a nitrile ligand in lead to the formation of mono-imine trans-[PtCl(2)(imine-a)(NCCH(2)CO(2)Me)] [imine-a = NH[double bond, length as m-dash]C(CH(2)CO(2)Me)ON = CMe(2)] and mono-oxadiazoline trans-[PtCl(2)(oxadiazoline-a)(NCCH(2)CO(2)Me)] [oxadiazoline-a = [upper bond 1 start]N[double bond, length as m-dash]C(CH(2)CO(2)Me)ON(Me)C[upper bond 1 end](H)(C(6)H(4)Me-4)] unsymmetric mixed ligand complexes, respectively, as the main products. Reactions of or with acetone oxime , cyclic nitrone (-)O(+)N = CHCH(2)CH(2)C[upper bond 1 end]Me(2) or N,N-diethylhydroxylamine give access, in moderate to good yields, to the unsymmetric mixed ligand oxadiazoline and/or imine complexes trans-[PtCl(2)(oxadiazoline-a)(imine-a)] , trans-[PtCl(2)(oxadiazoline-a)(oxadiazoline-b)] [oxadiazoline-b = [upper bond 1 start]N[double bond, length as m-dash]C(CH(2)CO(2)Me)O[lower bond 1 start]NC[upper bond 1 end](H)CH(2)CH(2)C[lower bond 1 end]Me(2)], trans-[PtCl(2)(imine-a)(imine-b)] [imine-b = NH = C(CH(2)CO(2)Me)ONEt(2)] or trans-[PtCl(2)(imine-a)(oxadiazoline-b)] . The cis mono-imine mixed ligand complex cis-[PtCl(2)(imine-a)(NCCH(2)CO(2)Me)] is the major product from the reaction of cis-[PtCl(2)(NCCH(2)CO(2)Me)(2)] with the oxime , while the di-imine compound cis-[PtCl(2)(imine-a)(2)] is a minor product. Reaction of cis-[PtCl(2)(imine-a)(NCCH(2)CO(2)Me)] with N,N-diethylhydroxylamine or the cyclic nitrone affords, in good yields, the unsymmetric mixed ligand complexes cis-[PtCl(2)(imine-a)(imine-b)] or cis-[PtCl(2)(imine-a)(oxadiazoline-b)] , respectively. All these complexes were characterized by elemental analyses, IR and (1)H, (13)C and (195)Pt NMR spectroscopies, and FAB(+)-MS. The X-ray structural analysis of trans-[PtCl(2){NH=C(CH(2)CO(2)Me)ON=CMe(2)}(NCCH(2)CO(2)Me)] is also reported.  相似文献   

6.
7.
8.
9.
10.
The complex [Pt(C2H4)(PPh3)2] reacts with Pb2Ph6 to give cis-[PtPh(Pb2Ph5)(PPh3)2]; this decomposes in solution to cis-[PtPh(PbPh3)(PPh3)2], which may also be obtained from the ethylene complex and PbPh4. Lead compounds PbPhMe3 and PbPh3Br also give products of insertion into PbPh bonds, but PbMe3Cl gives cis- and trans-[PtCl(PbMe3)(PPh3)2]. The complex trans-[Pt(PbPh3)2(PEt3)2] reacts with 1,2-bis(diphenylphosphino)ethane (DPPE) to give [Pt(PbPh3)2(DPPE)] which readily decomposes in dichloromethane in presence of PEt3 to give [Pt(PbPh3)(PEt3)(DPPE)]Cl and [PtPh(PEt3)(DPPE)]Cl. The complex trans-[PtCl(PbPh3)(PEt3)2] was detected in the products of reactions between trans-[PtCl2(PEt3)2] and trans-[Pt(PbPh3)2(PEt3)2] or less than 2 moles of LiPbPh3; it was not detected in the mixture after treatment of trans -[Pt(PbPh3)2(PEt3)2] with HCl. In contrast to an earlier report, we were unable to detect lead-containing complexes in the products of the reaction between trans-[PtHCl(PPh3)2] and Ph3PbNO3. The complexes and their decomposition products were identified by pre31P-{1H} NMR spectroscopy.  相似文献   

11.
Summary Mixed ligand complexes ofcis-[M(MetH)Cl2] (M=Pd2+ and Pt2+; MetH=methionine) with 2,4-disubstituted pyrimidines were prepared and characterised. Thecis-[Pd(MetH)Cl2] complex reacted with cytosine (2-hydroxy-4-aminopyrimidine), isocytosine (2-amino-4-hydroxypyrimidine) and thiocytosine (2-thio-4-amino-pyrimidine) to form ternary complexes.cis-[Pt(MetH)Cl2] however reacted with cytosine, uracil (2,4-pyrimidine dione or 2,4-dihydroxypyrimidine) to yield the corresponding mixed ligand complexes. The primary ligand, methionine, binds to the metal ion through sulphur and amino nitrogenvia a six membered chelate ring. The secondary ligands (substituted pyrimidines) bind to the Pd2+ or Pt2+ metal ion through the ring nitrogen (N3), as monodentate ligand. Thiocytosine however acts as a bidentate ligand, coordinating to the metal ion through-SH and ring nitrogen (N3). All complexes are 11 electrolytes, except the thiocytosine complex, which is a 12 electrolyte.  相似文献   

12.
13.
Diacetylplatinum(II) complexes [Pt(COMe)2(N^N)] (N^N = bpy, 3a; 4,4′-t-Bu2-bpy, 3b) were found to undergo oxidative addition reactions with organyl halides. The reaction of 3a with methyl iodide and propargyl bromide led to the formation of the cis addition products (OC-6-34)-[Pt(COMe)2(R)X(bpy)] (R = Me, X = I, 4a; CH2C≡CH, X = Br, 4k). Analogous reactions of 3a with ethyl iodide, benzyl bromide, and substituted benzyl bromides, 3-(bromomethyl)pyridine, 2-(bromomethyl)thiophene, allyl bromide, and cyclohex-2-enyl bromide led to exclusive formation of the trans addition products (OC-6-43)-[Pt(COMe)2(R)X(bpy)] (X = I, R = Et, 4b; X = Br, R = CH2C6H5, 4c; CH2C6H4(o-Br), 4d; CH2C6H4(p-COOH), 4e; CH2-3-py (3-pyridylmethyl), 4f; CH2-2-tp (2-thiophenylmethyl), 4g; CH2CH=CH2, 4h; c-hex-2-enyl (cyclohex-2-enyl), 4i). All complexes 4 were characterized by microanalysis, 1H and 13C NMR and IR spectroscopy. Additionally, complexes 4a, 4f, and 4g were characterized by single-crystal X-ray diffraction analyses. Reactions of 3a and 3b with o-, m- and p-bis(bromomethyl)benzene, respectively, led to the formation of dinuclear platinum(IV) complexes [{Pt(COMe)2Br(N^N)}2-{μ-(CH2)2C6H4}] (5). These complexes were characterized by microanalysis, IR spectroscopy, and depending on their solubility by 1H and 13C NMR spectroscopy, too. A single-crystal X-ray diffraction analysis of complex [{Pt(COMe)2Br(bpy)}2{μ-m-(CH2)2C6H4}] (5b) confirmed its dinuclear composition. The solid-state structures of 4a, 4f, 4g, and 5b are discussed in terms of C–H···O and O–H···O hydrogen bonds as well as π–π stacking between aromatic rings.  相似文献   

14.
The compounds trans-[Pt(OCHO)R(PPh3)2] (R = C6Cl5; 2,3,4,6-C6HCl4; 2,3,4,5-C6HCl4; 2,5-C6H3Cl2) have been prepared by treatment of [PtIR(PPh3)2] with AgClO4 followed by reaction with NaOCHO in methanol. The cis isomers have been obtained by the direct reaction of HCO2H with compounds containing PtHg bonds. For these and the analogous compounds containing C6F5 ligands, the dependence of J(31P195Pt) on R has been studied, and the effects of cis-R shown to be in the opposite direction from those of trans-R ligands.  相似文献   

15.
The complex [O3ClOPt(C6F5)(PEt3)2] which we have prepared for the first time, is used as a precursor of a series of cationic complexes [LPt(C6F5)(PEt3)2]ClO4 (L = PEt3, AsPh3, H2O, CO, OPPh3, SPPh3, HNPr2, py), which are easily obtained by adding L to the perchlorato complex.  相似文献   

16.
The reaction of PtCl2L (L = diphosphine) with the appropriate diphosphine L′ in ethanol followed by reduction with aqueous sodium borohydride leads to either disproportionation to give mixtures of the bis(diphosphine) complexes PtL2 and PtL′2 or to the formation of the mixed ligand complex PtLL′ depending on the diphosphines. Mixed ligand complexes are obtained when L=Ph2P(CH2)2PPh2, L′ = Ph2P(CH2PPh2cis-Ph2PCH CHPPh2, Ph2P(CH2)2AsPh2, Ph2- P(CH2)4PPh2, o-Ph2PC6H4PPh2; and L=(C6H11)2P(CH22P(C6H11)2, L′= Ph2P(CH2)PPh2, Ph2P(CH2)2PPh2cis-Ph2PCHCHPPh2, (2S,3S)-Ph2PCH- (CH3)CH(CH3)PPh2, (R)-Ph2PCH(CH3)CH2PPh2. When L=Ph2P(CH2)4PPh2 L′= Ph2P(CH23PPh2 or cis-Ph2PCHCHRPh2 the mixed ligand complexes are obtained but extensive disproportionation also occurs.  相似文献   

17.
《Chemical physics letters》1985,122(4):375-379
The absorption spectra, emission spectra, and emission lifetimes of Pt(Phpy)2, Pt(Thpy)2, and Pt(Bhq)2 complexes (Phpy, Thpy, and Bhq are the ortho C-deprotonated forms of 2-phenylpyridine, 2-(2-thienyl)-pyridine, and benzo(h)quinoline) have been studied and compared with those of the C-protonated neutral ligands. For all complexes examined the low-energy absorption bands in the near UV and visible region are assigned to metal-to-ligand charge-transfer transitions. The strong and structured luminescence emissions observed in the 500–600 nm region (lifetime in the microsecond range at 77 K) are assigned to metal-to-ligand charge-transfer excited states.  相似文献   

18.
19.

Abstract  

Luminescent organoplatinum complexes featuring 8-quinolinolates as chelating ligands have been synthesized and characterized. Substitution of the quinolinolate ligand has been achieved in the 5 position, where benzoyl substituents were introduced by reacting 8-hydroxyquinoline and the corresponding benzoyl chloride in a Friedel–Crafts acylation. The resulting complexes, κ2(N,C2)-(2-(4-tert-butylphenyl)pyridine)-κ2(N,O)-(5-(4-tert-butylphenyl)(8-quinolinolato-5-yl)methanone)platinum(II) and κ2(N,C2)-(3-hexyloxy-2-phenylpyridine)-κ2(N,O)-((8-quinolinolato-5-yl)phenylmethanone)platinum(II), have been investigated by nuclear magnetic resonance and infrared spectroscopy, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, X-ray analysis, thermal analysis, cyclic voltammetry, UV–vis absorption spectroscopy, and luminescence measurements in solution and in the solid state. The solid-state structures of the complexes were found to be dominated by π–π intermolecular interactions. Organic light-emitting devices based on the complexes and a matching host material gave red to near-infrared electroluminescence with low-onset voltages (4–5 V) and continuous wave luminance intensities exceeding 500 cd/m2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号