首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
This study elucidates the relation between wake vortex shedding and aerodynamic force fluctuations for a low Reynolds number wing from time resolved particle image velocimetry (TR-PIV) experimental measurements. The results reveal a periodic lift and drag variation within the shedding cycle and resolve the frequencies of those fluctuations from a proper orthogonal decomposition (POD) and power spectral density (PSD) analysis. To show the effect of vortex shedding on the body force fluctuations, the evolution of instantaneous aerodynamic forces is compared to the pressure field of the fluid flow and to the vortical structures in the wake of the airfoil. A six step model describing the vortex-force relation is proposed. It shows that changes in lift such as maximum lift and minimum lift are associated with the detachment of a vortex. It also shows that the minimum or local minimum drag value is obtained at the onset formation of a vortex on the airfoil wake. Similarly, the maximum or local maximum drag is obtained at the onset formation of the saddle on the airfoil wake. The model further explains the asymmetry observed in the unsteady drag force evolution. The model can be used to optimize flow control and fluid-structure interaction applications.  相似文献   

2.
A computational fluid dynamics (CFD) analysis was conducted to study the unsteady aerodynamics of a virtual flying bumblebee during hovering flight. The integrated geometry of bumblebee was established to define the shape of a three‐dimensional virtual bumblebee model with beating its wings, accurately mimicking the three‐dimensional movements of wings during hovering flight. The kinematics data of wings documented from the measurement to the bumblebee in normal hovering flight aided by the high‐speed video. The Navier–Stokes equations are solved numerically. The solution provides the flow and pressure fields, from which the aerodynamic forces and vorticity wake structure are obtained. Insights into the unsteady aerodynamic force generation process are gained from the force and flow‐structure information. The CFD analysis has established an overall understanding of the viscous and unsteady flow around the virtual flying bumblebee and of the time course of instantaneous force production, which reveals that hovering flight is dominated by the unsteady aerodynamics of both the instantaneous dynamics and also the past history of the wing. A coherent leading‐edge vortex with axial flow and the attached wingtip vortex and trailing edge vortex were detected. The leading edge vortex, wing tip vortex and trailing edge vortex, which caused by the pressure difference between the upper and the lower surface of wings. The axial flow, which include the spanwise flow and chordwise flow, is derived from the spanwise pressure gradient and chordwise pressure gradient, will stabilize the vortex and gives it a characteristic spiral conical shape. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Near wake vortex dynamics of a hovering hawkmoth   总被引:1,自引:0,他引:1  
Numerical investigation of vortex dynamics in near wake of a hovering hawkmoth and hovering aerodynamics is conducted to support the development of a biology-inspired dynamic flight simulator for flapping wingbased micro air vehicles. Realistic wing-body morphologies and kinematics are adopted in the numerical simulations. The computed results show 3D mechanisms of vortical flow structures in hawkmoth-like hovering. A horseshoe-shaped primary vortex is observed to wrap around each wing during the early down- and upstroke; the horseshoe-shaped vortex subsequently grows into a doughnut-shaped vortex ring with an intense jet-flow present in its core, forming a downwash. The doughnut-shaped vortex rings of the wing pair eventu- ally break up into two circular vortex rings as they propagate downstream in the wake. The aerodynamic yawing and rolling torques are canceled out due to the symmetric wing kinematics even though the aerodynamic pitching torque shows significant variation with time. On the other hand, the time- varying the aerodynamics pitching torque could make the body a longitudinal oscillation over one flapping cycle.  相似文献   

4.
This article briefly reviews wind turbine aerodynamics, which follows an explanation of the aerodynamic complexity. The aerodynamic models including blade momentum theory, vortex wake model, dynamic stall and rotational effect, and their applications in wind turbine aerodynamic performance prediction are discussed and documented. Recent progress in computational fluid dynamics for wind turbine is addressed. Wind turbine aerodynamic experimental studies are also selectively introduced.  相似文献   

5.
Stay cables of cable-stayed bridges often experience vibrations with large amplitudes induced by wind or jointly by both wind and rain. To understand the aerodynamic characteristics of the stay cables and excitation mechanics of rain–wind-induced vibration (RWIV), an inclined and yawed circular cylinder with and without an artificial upper rivulet is studied through a series of wind tunnel tests. The impacts of upper rivulet and axial flow on the aerodynamics of the cylinder are investigated. It is found that for an inclined and yawed cylinder without rivulet there exists a non-zero lift force at large wind angle. Furthermore, the wind pressures and aerodynamic forces acting on both the cylinder and the upper rivulet are obtained, which can be used to develop more rational theoretical models for RWIV of stay cables. Results show that the upper rivulet can both enhance and depress Karman vortex shedding depending on the position of the rivulet. As a result, dramatic variations of the aerodynamic forces acting on the cylinder and the rivulet will occur, which may eventually result in RWIV. Also axial flow may have a noticeable influence on the aerodynamic characteristics of the inclined and yawed cylinder. And the presence of the rivulet can enhance such influence from the axial flow.  相似文献   

6.
基于Weiss-Smith预处理矩阵和全局截断预处理参数,采用有限体积方法对雷诺平均Navier-Stokes方程进行离散。对流项离散采用二阶线性重构和AUSM +-up格式,时间推进方法采用多重网格下的LU-SGS方法。结合M PI消息传递方法,建立了一套计算低速流动的并行数值方法。计算了低速椭球体的流场和气动力,压力系数和切应力系数计算结果与文献实验结果对比吻合度较好。生成了末敏弹的流场计算网格,对绕末敏弹流场进行了数值模拟。对多重网格下多进程的加速比和并行效率进行了测试,显示了程序良好的并行效率。计算的气动力结果与实验结果吻合。综合结果表明:本文的数值方法能够用于低速弹箭流场和气动力计算,为新型弹箭的设计和定型提供保证。  相似文献   

7.
A low-order point vortex model for the two-dimensional unsteady aerodynamics of a flat plate wing section is developed. A vortex is released from both the trailing and leading edges of the flat plate, and the strength of each is determined by enforcing the Kutta condition at the edges. The strength of a vortex is frozen when it reaches an extremum, and a new vortex is released from the corresponding edge. The motion of variable-strength vortices is computed in one of two ways. In the first approach, the Brown–Michael equation is used in order to ensure that no spurious force is generated by the branch cut associated with each vortex. In the second approach, we propose a new evolution equation for a vortex by equating the rate of change of its impulse with that of an equivalent surrogate vortex with identical properties but constant strength. This impulse matching approach leads to a model that admits more general criteria for shedding, since the variable-strength vortex can be exchanged for its constant-strength surrogate at any instant. We show that the results of the new model, when applied to a pitching or perching plate, agree better with experiments and high-fidelity simulations than the Brown–Michael model, using fewer than ten degrees of freedom. We also assess the model performance on the impulsive start of a flat plate at various angles of attack. Current limitations of the model and extensions to more general unsteady aerodynamic problems are discussed.  相似文献   

8.
The aim of the present work is to understand the aerodynamic phenomena and the vortex topology of an unsteady flapping motion by means of numerical and experimental methods. Instead of the use of real insect/bird wing geometries and kinematics which are highly complex and difficult to imitate by an exact modeling, a simplified model is used in order to understand the unsteady aerodynamics and vortex formation mechanisms during the different phases of the flapping motion. The flow is assumed to be laminar with a Reynolds number of 1,000. Direct numerical simulations, laser sheet visualizations and particle image velocimetry (PIV) measurements are performed for the phenomenological analysis of the flow. The vortex dynamics and their identification are put in evidence with PIV measurements by considering velocity magnitude, streamlines, second invariant of velocity gradient (Q-criteria), vorticity contours and Eurlerian accelerations.  相似文献   

9.
The aerodynamic force and flow structure of NACA 0012 airfoil performing an unsteady motion at low Reynolds number (Re=100) are calculated by solving Navier-Stokes equations. The motion consists of three parts: the first translation, rotation and the second translation in the direction opposite to the first. The rotation and the second translation in this motion are expected to represent the rotation and translation of the wing-section of a hovering insect. The flow structure is used in combination with the theory of vorticity dynamics to explain the generation of unsteady aerodynamic force in the motion. During the rotation, due to the creation of strong vortices in short time, large aerodynamic force is produced and the force is almost normal to the airfoil chord. During the second translation, large lift coefficient can be maintained for certain time period and , the lift coefficient averaged over four chord lengths of travel, is larger than 2 (the corresponding steady-state lift coefficient is only 0.9). The large lift coefficient is due to two effects. The first is the delayed shedding of the stall vortex. The second is that the vortices created during the airfoil rotation and in the near wake left by previous translation form a short “vortex street” in front of the airfoil and the “vortex street” induces a “wind”; against this “wind” the airfoil translates, increasing its relative speed. The above results provide insights to the understanding of the mechanism of high-lift generation by a hovering insect. The project supported by the National Natural Science Foundation of China (19725210)  相似文献   

10.
鲍欢欢  谷正气  谭鹏 《实验力学》2014,29(4):460-466
汽车尾部湍流场是汽车压差阻力的主要来源,在HD-2汽车模型风洞中,首先使用测力天平和测压系统,对横摆角工况下汽车模型的气动六分力和纵对称截面48个测点的表面压力进行了测量,然后利用PIV测量技术对模型在横摆角分别为0°、15°的尾部湍流场进行了测量,获得该模型尾流场的速度场、涡量场和雷诺应力流场信息,通过计算得出尾流场区域空间相关系数和湍流积分尺度。结果表明:在横摆角工况下,汽车模型尾部涡流的结构呈现向上发展的趋势;尾流场拖拽涡的范围和强度的增大导致了模型气动力出现较大的增加;湍流积分尺度的变化表明,尾部涡流区的分离噪声与涡流分离位置有关,在汽车尾部造型设计中,要尽量推迟尾部涡流的分离。  相似文献   

11.
To examine the effects of wing morphing on unsteady aerodynamics, deformable flapping plates are numerically studied in a low-Reynolds-number flow. Simulations are carried out using an in-house immersed-boundary-method-based direct numerical simulation (DNS) solver. In current work, chord-wise camber is modeled by a hinge connecting two rigid components. The leading portion is driven by a biological hovering motion along a horizontal stroke plane. The hinged trailing-edge flap (TEF) is controlled by a prescribed harmonic deflection motion. The effects of TEF deflection amplitude, deflection phase difference, hinge location, and Reynolds number on the aerodynamic performance and flow structures are investigated. The results show that the unsteady aerodynamic performance of deformable flapping plates is dominated by the TEF deflection phase difference, which directly affects the strength of the leading-edge vortex (LEV) and thus influences the entire vortex shedding process. The overall lift enhancement can reach up to 26% by tailoring the deflection amplitude and deflection phase difference. It is also found that the role of the dynamic TEF played in the flapping flight is consistent over a range of hinge locations and Reynolds numbers. Results from a low aspect-ratio (AR=2) deformable plate show the same trend as those of 2-D cases despite the effect of the three-dimensionality.  相似文献   

12.
Ruimin Sun 《力学快报》2011,1(3):032001
The tip vortices and aerodynamics of a NACA0012 wing in the vicinity of the ground were studied in a wind tunnel. The wing tip vortex structures and lift/drag forces were measured by a seven-hole probe and a force balance, respectively. The evolution of the flow structures and aerodynamics with a ground height were analyzed. The vorticity of tip vortices was found to reduce with the decreasing of the ground height, and the position of vortex-core moved gradually to the outboard of the wing tip. Therefore, the down-wash flow induced by the tip vortices was weakened. However, vortex breakdown occurred as the wing lowered to the ground. From the experimental results of aerodynamics, the maximum lift-to-drag ratio was observed when the angle of attack was 2.5° and the ground clearance was 0.2.  相似文献   

13.
The linear problem of the time-dependent inviscid flow past a thin symmetric airfoil with a control on its trailing edge deflected in accordance with an arbitrary law is considered. The aerodynamic loads on the airfoil are calculated. The intensity of the vortex wake shed from the airfoil is determined by numerically solving a Volterra integral equation of the first kind. Questions of the mathematical modeling of the time-dependent aerodynamic loads in a form convenient for the joint solution of the problems of aerodynamics and flight dynamics are also considered. The results of the modeling are compared with the numerical solutions obtained.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, 2005, pp. 157–169.Original Russian Text Copyright © 2005 by Khrabrov.  相似文献   

14.
近空间飞行器的气动复合控制原理及研究进展   总被引:1,自引:0,他引:1  
李素循 《力学进展》2009,39(6):740-755
简单回顾与讨论了在飞行器穿越大气层时,使用气动复合控制方案的必要性与可能性.其中最复杂情况为发动机喷流推力与舵面空气动力共同使用所形成的复合控制.喷流与外流相撞引起的强干扰形成了十分复杂的干扰流场,文中介绍了复杂流动形成的原因、流场结构的特点以及干扰引起的流场改变影响了飞行器性能的预估.基于3种研究途径:理论建模与数值模拟技术、地面试验模拟技术、飞行试验技术的研究,以及它们的发展及互相验证, 用来预估飞行器的性能.为了保证地面模拟与真实飞行之间存在相似关系, 研究相似准则的作用,及分析目前的模拟能力, 涉及到许多空气动力学界至今尚未解决的难题,为了解决这些困难对今后的研究及应用提出了多方面的需求.   相似文献   

15.
The influence of periodic blade pitching on rotor aerodynamics is numerically investigated at a Reynolds number typical of micro-air vehicles. Blade pitching motion is parameterized using three variables, giving rise to a large parameter space that is explored through 74 test cases. Results show that a relevant tuning of pitching variables can lead to an increase in rotational efficiency and thrust, which is found to be primarily related to the occurrence of reversed von Karman street, leading edge vortex (LEV) formation and dynamic stall phenomenon. In addition, for cases where reversed von Karman street occurs, the flow is found to be quasi-two-dimensional, suggesting that quasi-two-dimensional approaches can provide relevant approximations of the global aerodynamics. Overall, the analysis demonstrates that blade pitching can be beneficial to the aerodynamic performance of micro-air vehicles and helps draw guidelines for further improvements of flapping-rotor concepts.  相似文献   

16.
Unsteady aerodynamics modeling for flight dynamics application   总被引:2,自引:0,他引:2  
In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.  相似文献   

17.
Limit cycle oscillations of two-dimensional panels in low subsonic flow   总被引:1,自引:0,他引:1  
Limit cycle oscillations of a two-dimensional panel in low subsonic flow have been studied theoretically and experimentally. The panel is clamped at its leading edge and free at its trailing edge. A structural non-linearity arises in both the bending stiffness and the mass inertia. Two-dimensional incompressible (linear) vortex lattice aerodynamic theory and a corresponding reduced order aerodynamic model were used to calculate the linear flutter boundary and also the limit cycle oscillations (that occur beyond the linear flutter boundary).  相似文献   

18.
Tip gap height effects on aerodynamic losses downstream of a cavity squealer tip have been investigated in a linear turbine cascade for power generation, in comparison with plane tip results. Three-dimensional flow fields are measured with a five-hole probe for tip gap height-to-chord ratios of h/c = 0.5, 1.0, 1.5 and 2.0%. The cavity squealer tip has a full length squealer with its rim height-to-chord ratio of 5.51%. For a fixed value of h/c, the tip leakage vortex for the cavity squealer tip is always weaker than that for the plane tip, and the flow field in the passage vortex region for the cavity squealer tip is less influenced by the tip leakage flow than that for the plane tip. For the cavity squealer tip, there is no appreciable change in local aerodynamic loss with h/c in the passage vortex region, but local aerodynamic loss in the tip leakage vortex region increases with h/c. The roles of the cavity squealer tip in reducing aerodynamic loss in comparison with the plane tip case are twofold: (1) the cavity squealer tip decreases the leakage flow discharge in the region from the leading edge to the mid-chord, which leads to an aerodynamic loss reduction in the passage vortex region and (2) it also decreases the leakage flow discharge downstream of the mid-chord, which results in an aerodynamic loss reduction in the tip leakage vortex region.  相似文献   

19.
It has been known for a century that quasi-steady attached flows are insufficient to explain aerodynamic force production in bumblebees and many other insects. Most recent studies of the unsteady, separated-flow aerodynamics of insect flight have used physical, analytical or numerical modeling based upon simplified kinematic data treating the wing as a flat plate. However, despite the importance of validating such models against living subjects, few good data are available on what real insects actually do aerodynamically in free flight. Here we apply classical smoke line visualization techniques to analyze the aerodynamic mechanisms of free-flying bumblebees hovering, maneuvering and flying slowly along a windtunnel (advance ratio: −0.2 to 0.2). We find that bumblebees, in common with most other insects, exploit a leading-edge vortex. However, in contrast to most other insects studied to date, bumblebees shed both tip and root vortices, with no evidence for any flow structures linking left and right wings or their near-wakes. These flow topologies will be less efficient than those in which left and right wings are aerodynamically linked and shed only tip vortices. While these topologies might simply result from biological constraint, it is also possible that they might have been specifically evolved to enhance control by allowing left and right wings to operate substantially independently. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
聂少军  汪运鹏 《力学学报》2022,54(1):232-243
在激波风洞中开展测力试验时,测力系统在风洞流场起动瞬间会受到冲击激励,从而对天平的输出信号产生惯性干扰.天平输出信号中叠加有动态气动力信号和惯性振动信号,有可能无法直接分辨出气动力信号的规律性,信号处理结果与真实气动力之间会产生较大的误差,导致处理结果不可靠.由于模型测力天平系统结构的复杂性,在极短的有效试验时间(毫秒...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号