首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A numerical model is constructed for modelling macroscale damping effects induced by the first-order martensite phase transformations in a shape memory alloy rod. The model is constructed on the basis of the modified Landau–Ginzburg theory that couples nonlinear mechanical and thermal fields. The free energy function for the model is constructed as a double well function at low temperature, such that the external energy can be absorbed during the phase transformation and converted into thermal form. The Chebyshev spectral methods are employed together with backward differentiation for the numerical analysis of the problem. Computational experiments performed for different vibration energies demonstrate the importance of taking into account damping effects induced by phase transformations.  相似文献   

2.
This paper is a continuation of our work in Grobbelaar-Van Dalsen (Appl Anal 90:1419–1449, 2011) where we showed the strong stability of models involving the thermoelastic Mindlin–Timoshenko plate equations with second sound. For the case of a plate configuration consisting of a single plate, this was accomplished in radially symmetric domains without applying any mechanical damping mechanism. Further to this result, we establish in this paper the non-exponential stability of the model for a particular configuration under mixed boundary conditions on the shear angle variables and Dirichlet boundary conditions on the displacement and thermal variables when the heat flux is described by Fourier’s law of heat conduction. We also determine the rate of polynomial decay of weak solutions of the model in a radially symmetric region under Dirichlet boundary conditions on the displacement and thermal variables and free boundary conditions on the shear angle variables.  相似文献   

3.
In this paper we consider the question of stabilization of a linear three‐dimensional structural acoustic model, which incorporates displacement, rotational inertia, shear and thermal effects in the flat flexible structural component of the model. We show strong stabilization of the coupled model without incorporating viscous or boundary damping in the equations for the gas dynamics and without imposing geometric conditions. It turns out that damping is needed in the interior of the plate. Our main tool is an abstract resolvent criterion due to Y. Tomilov. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
5.
The modelling of the coiling process involves a mechanical model of the dynamic system that consists of the rotating coiling drum and the axially and transversally moving strip. Due to the coiling a change of mass in the system takes place. For such a variable mass system a control volume concept has to be introduced in order to get the equations of motion of the dynamic system with variable parameters. A Runge Kutta time integration algorithm is applied to compute the solution. It is assumed that the outer radius of the coiling drum increases linear with the rotation angle. The bending deflection of the shaft results from an inhomogeneous temperature distribution within the coiled material on the coiling drum. Two different boundary conditions of the moving strip have been considered and it is demonstrated that the thermal deflection of the drum has a high influence upon the fluctuation of the strip force. For a given geometry and strip speed we obtain a critical thermal deflection where the minimum strip tension force is zero. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Alois Steindl 《PAMM》2008,8(1):10383-10384
We consider a system composed of an elastic tube, which is fixed at the outer boundary and in frictional contact with a rigid cylinder, rotating inside the tube about the common axis. Using a 1–mode Galerkin ansatz in radial direction, a non–smooth PDE for the tangential and radial deformations at the contact between the two bodies is obtained. It has been shown ([1]) that different types of travelling stick–slip–separation waves exist, but these waves are unstable for most parameter values. In this investigation we first enlarge the model by viscuous damping and second we introduce a larger number of nodes in radial direction for the numerical analysis. The influence of these two effects on the shape and stability of the travelling waves is studied. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
In this paper, the generalized thermoelastic response of a beam subjected to a partial lateral thermal shock is analysed. The beam is made of homogeneous and isotropic material and is assumed to follow the Hooke law for its constitutive material. The displacement gradient is small and the linear form of strain-displacement relations is used for the beam. The equations of motion and the boundary conditions of the beam are derived based on Hamilton’s principle. According to the first and second laws of thermodynamics, a non-Fourier constitutive equation is employed to derive the energy equation of the beam. The non-Fourier effects lead to the constitutive equation of the hyperbolic type and thus the thermal and mechanical waves can be observed. The propagation of waves in the beam are simulated by finite element model and the wave reflections for different types of boundary conditions are studied. The relaxation time is considered as a significant parameter and results show that energy absorption of the structure and the wave propagation speed depend upon this parameter.  相似文献   

8.
An analytical study for the problem of unsteady mixed convection with thermal radiation and first-order chemical reaction on magnetohydrodynamics boundary layer flow of viscous, electrically conducting fluid past a vertical permeable plate has been presented. Slip boundary condition is applied at the porous interface. The classical model is used for studying the effect of radiation for optically thin media. The non-linear coupled partial differential equations are solved by perturbation technique. The results obtained show that the velocity, temperature and concentration fields are appreciably influenced by the presence of chemical reaction, thermal stratification and magnetic field. It is observed that the effect of thermal radiation and magnetic field decreases the velocity, temperature and concentration profiles in the boundary layer. Also, the effects of the various parameters on the skin-friction coefficient and the rate of heat transfer at the surface are discussed.  相似文献   

9.
A mathematical model for both axial and transverse motions of two beams with cylindrical cross-sections coupled through a joint is presented and analyzed. The motivation for this problem comes from the need to accurately model damping and joint dynamics for the next generation of inflatable/rigidizable space structures. Thermo-elastic damping is included in the two beams and the motions are coupled through a joint which includes an internal moment. Thermal response in each beam is modeled by two temperature fields. The first field describes the circumferentially averaged temperature along the beam, and is linked to the axial deformation of the beam. The second describes the circumferential variation and is coupled to transverse bending. The resulting equations of motion consist of four, second-order in time, partial differential equations, four, first-order in time, partial differential equations, four second order ordinary differential equations, and certain compatibility boundary conditions. The system is written as an abstract differential equation in an appropriate Hilbert space, consisting of function spaces describing the distributed beam deflections and temperature fields, and a finite-dimensional space that projects important features at the joint boundary. Semigroup theory is used to prove that the system is well-posed, and that with positive damping parameters the resulting semigroup is exponentially stable. Steady states are characterized and several numerical approximation results are presented. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We consider coupled PDE systems comprising of a hyperbolic and a parabolic-like equation with an interface on a portion of the boundary. These models are motivated by structural acoustic problems. A specific prototype consists of a wave equation defined on a three-dimensional bounded domain Ω coupled with a thermoelastic plate equation defined on Γ 0—a flat surface of the boundary \partial Ω . Thus, the coupling between the wave and the plate takes place on the interface Γ 0. The main issue studied here is that of uniform stability of the overall interactive model. Since the original (uncontrolled) model is only strongly stable, but not uniformly stable, the question becomes: what is the ``minimal amount' of dissipation necessary to obtain uniform decay rates for the energy of the overall system? Our main result states that boundary nonlinear dissipation placed only on a suitable portion of the part of the boundary which is complementary to Γ 0, suffices for the stabilization of the entire structure. This result is new with respect to the literature on several accounts: (i) thermoelasticity is accounted for in the plate model; (ii) the plate model does not account for any type of mechanical damping, including the structural damping most often considered in the literature; (iii) there is no mechanical damping placed on the interface Γ 0; (iv) the boundary damping is nonlinear without a prescribed growth rate at the origin; (v) the undamped portions of the boundary \partial Ω are subject to Neumann (rather than Dirichlet) boundary conditions, which is a recognized difficulty in the context of stabilization of wave equations, due to the fact that the strong Lopatinski condition does not hold. The main mathematical challenge is to show how the thermal energy is propagated onto the hyperbolic component of the structure. This is achieved by using a recently developed sharp theory of boundary traces corresponding to wave and plate equations, along with the analytic estimates recently established for the co-continuous semigroup associated with thermal plates subject to free boundary conditions. These trace inequalities along with the analyticity of the thermoelastic plate component allow one to establish appropriate inverse/ recovery type estimates which are critical for uniform stabilization. Our main result provides ``optimal' uniform decay rates for the energy function corresponding to the full structure. These rates are described by a suitable nonlinear ordinary differential equation, whose coefficients depend on the growth of the nonlinear dissipation at the origin. \par Accepted 12 May 2000. Online publication 6 October 2000.  相似文献   

11.
An efficient algorithm is proposed to solve the steady-state nonlinear heat conduction equation using the boundary element method (BEM). Nonlinearity of the heat conduction equation arises from nonlinear boundary conditions and temperature dependence of thermal conductivity. Using Kirchhoff's transformation, the case of temperature dependence of thermal conductivity can be transformed to the nonlinear boundary conditions case. Applying the BEM technique, the resulting matrix equation becomes nonlinear. The nonlinearity, however, only involves the boundary nodes that have nonlinearboundary conditions. The proposed local iterative scheme reduces the entire BEM matrix equation to a smaller matrix equation whose rank is the same as the number of boundary nodes with nonlinear boundary conditions. The Newton-Raphson iteration scheme is used to solve the reduced nonlinear matrix equation. The local iterative scheme is first applied to two one-dimensional problems (analytical solutions are possible) with different nonlinear boundary conditions. It is then applied to a two-region problem. Finally, the local iterative scheme is applied to two cavity problems in which radiation plays a role in the heat transfer.  相似文献   

12.
In this paper, we consider the energy decay rate of a thermoelastic Bresse system with variable coefficients. Assume that the thermo-propagation in the system satisfies the Cattaneo's law, which can eliminate the paradox of infinite speed of thermal propagation in the assumption of the Fourier's law in the classical theory of thermoelasticity. Meanwhile, we also discuss the effect of a boundary viscoelastic damping on the stability of this system. By a detailed spectral analysis, we obtain the expressions of the spectrum and deduce some spectral properties of the system. Then based on the distribution of the spectrum, we prove that the energy of the system with a boundary viscoelastic damping decays exponentially. However, it no longer decays exponentially if there is no boundary damping. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
In this work, we have constructed the equations for generalized thermoelasticity of an unbounded fiber-reinforced anisotropic medium with a circular hole. The formulation is applied in the context of Green and Naghdi (GN) theory. The thermoelastic interactions are caused by (I) a uniform step in stress applied to the boundary of the hole with zero temperature change and (II) a uniform step in temperature applied to the boundary of the hole which is stress-free. The solutions for displacement, temperature and stresses are obtained with the help of the finite element procedure. The effects of the reinforcement on temperature, stress and displacement are studied. Results obtained in this work can be used for designing various fiber-reinforced anisotropic elements under mechanical or thermal load to meet special engineering requirements.  相似文献   

14.
15.
Stabilization of a hybrid system of elasticity by feedback boundary damping   总被引:4,自引:0,他引:4  
Summary A hybrid control system is presented as consisting of an elastic beam linked to a rigid body, and the system is asymptotically stabilized through feedback boundary damping. Solutions of the hybrid system are constructed that decay towards zero at nonexponential, even arbitrarily slow, decay rates. This feedback control analysis complements the authors' earlier report on the open-loop controllability of this same hybrid system, which is a simplified model of a space-structure.This research was partially supported by NSF Grant DMS 86-07687 and AFOSR-ISSA-860088, and the second author also received support from SERC.  相似文献   

16.
The boundary integral equation method (BIEM) is developed for the analysis of shallow membrane shells with positive Gaussian curvatures. Shells with constant thickness and constant curvatures are considered. In the infinite domain, fundamental solutions are obtained which correspond to generalized concentrated tangential forces in the x and y coordinate directions. The Betti-Maxwell reciprocal theorem and Green's second identity are used to obtain the boundary integral equations of the solution presented.This approach, which is applied for the first time in membrane shell theory, seems to be a powerful alternative to domain type methods. Shells with various boundary conditions, loadings and arbitrary plan forms can be considered. It is also possible to add the effects of thermal fields and openings in the shells.The potential of the method is demonstrated by means of a worked example.  相似文献   

17.
基于Karman-Donnell型非线性壳体方程,给出带压电作动器混合层合圆柱曲板在机械荷载、电荷载和热荷载作用下的后屈曲分析.假定温度场为均匀分布,电场仅有沿板厚方向的分量Ez,且假定材料性能常数与温度和电场的变化无关。将壳体屈曲的边界层理论推广到混合层合圆柱曲板受复合荷载作用的情况.相应的奇异摄动法用于确定圆柱曲板的屈曲荷载和后屈曲平衡路径.分析中同时考虑非线性前屈曲变形和初始几何缺陷的影响.数值算例给出完善和非完善,含整体覆盖或内埋压电作动器正交铺设层合圆柱曲板的后屈曲平衡路径。讨论了温度变化、控制电压、铺层方式、面内边界条件和初始几何缺陷等各种参数变化的影响。  相似文献   

18.
The full von Karman system accounting for in plane acceleration and thermal effects is considered. The main results of the paper are: (i) the wellposedness of regular and weak (finite energy) solutions, (ii) the uniform decay rates obtained for the energy function in the presence of boundary damping affecting only the velocity field representing in plane displacements of the plate. The key role in these results is played by: (i) new sharp regularity estimates for the boundary traces of elastic systems and (ii) newly established properties of analyticity of semigroups arising in thermoelastic systems with free boundary conditions.  相似文献   

19.
We consider a mathematical model for thermal analysis in a 3D N‐carrier system with Neumann boundary conditions, which extends the concept of the well‐known parabolic two‐step model for micro heat transfer. To solve numerically the complex system, we first reduce 3D equations in the model to a succession of 1D equations by using the local one‐dimensional (LOD) method. The obtained 1D equations are then solved using a fourth‐order compact finite difference scheme for the interior points and a second‐order combined compact finite difference scheme for the points next to the boundary, so that the Neumann boundary condition can be applied directly without discretizing. By using matrix analysis, the compact LOD scheme is shown to be unconditionally stable. The accuracy of the solution is tested using two numerical examples. Results show that the solutions obtained by the compact LOD finite difference scheme are more accurate than those obtained by a Crank‐Nicholson LOD scheme, and the convergence rate with respect to spatial variables is about 2.6. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

20.
This article considers the dual‐phase‐lagging (DPL) heat conduction equation in a double‐layered nanoscale thin film with the temperature‐jump boundary condition (i.e., Robin's boundary condition) and proposes a new thermal lagging effect interfacial condition between layers. A second‐order accurate finite difference scheme for solving the heat conduction problem is then presented. In particular, at all inner grid points the scheme has the second‐order temporal and spatial truncation errors, while at the boundary points and at the interfacial point the scheme has the second‐order temporal truncation error and the first‐order spatial truncation error. The obtained scheme is proved to be unconditionally stable and convergent, where the convergence order in ‐norm is two in both space and time. A numerical example which has an exact solution is given to verify the accuracy of the scheme. The obtained scheme is finally applied to the thermal analysis for a gold layer on a chromium padding layer at nanoscale, which is irradiated by an ultrashort‐pulsed laser. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 142–173, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号