首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the kinases in the DUD dataset and an in-house HTS dataset from PI3K-γ, receptor-based virtual screening experiments were performed using Glide SP docking. While significant enrichments were observed for eight of the nine targets in the set, more detailed analyses highlighted that much of the early enrichment (10–80%) is the result of retrieval of a single cluster of active compounds. This biased retrieval was not necessarily due to early enrichment of the cluster containing the co-crystallized ligand. Virtual screening validation studies could thus benefit from including cluster-based analyses to assess enrichment of diverse chemotypes.  相似文献   

2.
Lead Finder is a molecular docking software. Sampling uses an original implementation of the genetic algorithm that involves a number of additional optimization procedures. Lead Finder's scoring functions employ a set of semi-empiric molecular mechanics functionals that have been parameterized independently for docking, binding energy predictions and rank-ordering for virtual screening. Sampling and scoring both utilize a staged approach, moving from fast but less accurate algorithm versions to computationally more intensive but more accurate versions. Lead Finder includes tools for the preparation of full atom protein and ligand models. In this exercise, Lead Finder achieved 72.9% docking success rate on the Astex test set when the original author-prepared full atom models were used, and 74.1% success rate when the structures were prepared by Lead Finder. The major cause of docking failures were scoring errors resulting from the use of imperfect solvation models. In many cases, docking errors could be corrected by the proper protonation and the use of correct cyclic conformations of ligands. In virtual screening experiments on the DUD test set the early enrichment factor of several tens was achieved on average. However, the area under the ROC curve ("AUC ROC") ranged from 0.70 to 0.74 depending on the screening protocol used, and the separation from the null model was not perfect-0.12-0.15 units of AUC ROC. We assume that effective virtual screening in the whole range of enrichment curve and not just at the early enrichment stages requires more accurate solvation modeling and accounting for the protein backbone flexibility.  相似文献   

3.
Flexible docking and scoring using the internal coordinate mechanics software (ICM) was benchmarked for ligand binding mode prediction against the 85 co-crystal structures in the modified Astex data set. The ICM virtual ligand screening was tested against the 40 DUD target benchmarks and 11-target WOMBAT sets. The self-docking accuracy was evaluated for the top 1 and top 3 scoring poses at each ligand binding site with near native conformations below 2?? RMSD found in 91 and 95% of the predictions, respectively. The virtual ligand screening using single rigid pocket conformations provided the median area under the ROC curves equal to 69.4 with 22.0% true positives recovered at 2% false positive rate. Significant improvements up to ROC AUC?=?82.2 and ROC((2%))?=?45.2 were achieved following our best practices for flexible pocket refinement and out-of-pocket binding rescore. The virtual screening can be further improved by considering multiple conformations of the target.  相似文献   

4.
In conjunction with the recent American Chemical Society symposium titled "Docking and Scoring: A Review of Docking Programs" the performance of the DOCK6 program was evaluated through (1) pose reproduction and (2) database enrichment calculations on a common set of organizer-specified systems and datasets (ASTEX, DUD, WOMBAT). Representative baseline grid score results averaged over five docking runs yield a relatively high pose identification success rate of 72.5?% (symmetry corrected rmsd) and sampling rate of 91.9?% for the multi site ASTEX set (N?=?147) using organizer-supplied structures. Numerous additional docking experiments showed that ligand starting conditions, symmetry, multiple binding sites, clustering, and receptor preparation protocols all affect success. Encouragingly, in some cases, use of more sophisticated scoring and sampling methods yielded results which were comparable (Amber score ligand movable protocol) or exceeded (LMOD score) analogous baseline grid-score results. The analysis highlights the potential benefit and challenges associated with including receptor flexibility and indicates that different scoring functions have system dependent strengths and weaknesses. Enrichment studies with the DUD database prepared using the SB2010 preparation protocol and native ligand pairings yielded individual area under the curve (AUC) values derived from receiver operating characteristic curve analysis ranging from 0.29 (bad enrichment) to 0.96 (good enrichment) with an average value of 0.60 (27/38 have AUC?≥?0.5). Strong early enrichment was also observed in the critically important 1.0-2.0?% region. Somewhat surprisingly, an alternative receptor preparation protocol yielded comparable results. As expected, semi-random pairings yielded poorer enrichments, in particular, for unrelated receptors. Overall, the breadth and number of experiments performed provide a useful snapshot of current capabilities of DOCK6 as well as starting points to guide future development efforts to further improve sampling and scoring.  相似文献   

5.
The HYDE scoring function consistently describes hydrogen bonding, the hydrophobic effect and desolvation. It relies on HYdration and DEsolvation terms which are calibrated using octanol/water partition coefficients of small molecules. We do not use affinity data for calibration, therefore HYDE is generally applicable to all protein targets. HYDE reflects the Gibbs free energy of binding while only considering the essential interactions of protein-ligand complexes. The greatest benefit of HYDE is that it yields a very intuitive atom-based score, which can be mapped onto the ligand and protein atoms. This allows the direct visualization of the score and consequently facilitates analysis of protein-ligand complexes during the lead optimization process. In this study, we validated our new scoring function by applying it in large-scale docking experiments. We could successfully predict the correct binding mode in 93% of complexes in redocking calculations on the Astex diverse set, while our performance in virtual screening experiments using the DUD dataset showed significant enrichment values with a mean AUC of 0.77 across all protein targets with little or no structural defects. As part of these studies, we also carried out a very detailed analysis of the data that revealed interesting pitfalls, which we highlight here and which should be addressed in future benchmark datasets.  相似文献   

6.
Several combinations of docking software and scoring functions were evaluated for their ability to predict the binding of a dataset of potential HIV integrase inhibitors. We found that different docking software were appropriate for each one of the three binding sites considered (LEDGF, Y3 and fragment sites), and the most suitable two docking protocols, involving Glide SP and Gold ChemScore, were selected using a training set of compounds identified from the structural data available. These protocols could successfully predict respectively 20.0 and 23.6 % of the HIV integrase binders, all of them being present in the LEDGF site. When a different analysis of the results was carried out by removing all alternate isomers of binders from the set, our predictions were dramatically improved, with an overall ROC AUC of 0.73 and enrichment factor at 10 % of 2.89 for the prediction obtained using Gold ChemScore. This study highlighted the ability of the selected docking protocols to correctly position in most cases the ortho-alkoxy-carboxylate core functional group of the ligands in the corresponding binding site, but also their difficulties to correctly rank the docking poses.  相似文献   

7.
Performance of Glide was evaluated in a sequential multiple ligand docking paradigm predicting the binding modes of 129 protein-ligand complexes crystallized with clusters of 2-6 cooperative ligands. Three sampling protocols (single precision-SP, extra precision-XP, and SP without scaling ligand atom radii-SP hard) combined with three different scoring functions (GlideScore, Emodel and Glide Energy) were tested. The effects of ligand number, docking order and druglikeness of ligands and closeness of the binding site were investigated. On average 36?% of all structures were reproduced with RMSDs lower than 2??. Correctly docked structures reached 50?% when docking druglike ligands into closed binding sites by the SP hard protocol. Cooperative binding to metabolic and transport proteins can dramatically alter pharmacokinetic parameters of drugs. Analyzing the cytochrome P450 subset the SP hard protocol with Emodel ranking reproduced two-thirds of the structures well. Multiple ligand binding is also exploited by the fragment linking approach in lead discovery settings. The HSP90 subset from real life fragment optimization programs revealed that Glide is able to reproduce the positions of multiple bound fragments if conserved water molecules are considered. These case studies assess the utility of Glide in sequential multiple docking applications.  相似文献   

8.
Results of a previous docking study are reanalyzed and extended to include results from the docking program FRED and a detailed statistical analysis of both structure reproduction and virtual screening results. FRED is run both in a traditional docking mode and in a hybrid mode that makes use of the structure of a bound ligand in addition to the protein structure to screen molecules. This analysis shows that most docking programs are effective overall but highly inconsistent, tending to do well on one system and poorly on the next. Comparing methods, the difference in mean performance on DUD is found to be statistically significant (95% confidence) 61% of the time when using a global enrichment metric (AUC). Early enrichment metrics are found to have relatively poor statistical power, with 0.5% early enrichment only able to distinguish methods to 95% confidence 14% of the time.  相似文献   

9.
Benchmarks for molecular docking have historically focused on re-docking the cognate ligand of a well-determined protein-ligand complex to measure geometric pose prediction accuracy, and measurement of virtual screening performance has been focused on increasingly large and diverse sets of target protein structures, cognate ligands, and various types of decoy sets. Here, pose prediction is reported on the Astex Diverse set of 85 protein ligand complexes, and virtual screening performance is reported on the DUD set of 40 protein targets. In both cases, prepared structures of targets and ligands were provided by symposium organizers. The re-prepared data sets yielded results not significantly different than previous reports of Surflex-Dock on the two benchmarks. Minor changes to protein coordinates resulting from complex pre-optimization had large effects on observed performance, highlighting the limitations of cognate ligand re-docking for pose prediction assessment. Docking protocols developed for cross-docking, which address protein flexibility and produce discrete families of predicted poses, produced substantially better performance for pose prediction. Performance on virtual screening performance was shown to benefit by employing and combining multiple screening methods: docking, 2D molecular similarity, and 3D molecular similarity. In addition, use of multiple protein conformations significantly improved screening enrichment.  相似文献   

10.
Molecular docking of small‐molecules is an important procedure for computer‐aided drug design. Modeling receptor side chain flexibility is often important or even crucial, as it allows the receptor to adopt new conformations as induced by ligand binding. However, the accurate and efficient incorporation of receptor side chain flexibility has proven to be a challenge due to the huge computational complexity required to adequately address this problem. Here we describe a new docking approach with a very fast, graph‐based optimization algorithm for assignment of the near‐optimal set of residue rotamers. We extensively validate our approach using the 40 DUD target benchmarks commonly used to assess virtual screening performance and demonstrate a large improvement using the developed side chain optimization over rigid receptor docking (average ROC AUC of 0.693 vs. 0.623). Compared to numerous benchmarks, the overall performance is better than nearly all other commonly used procedures. Furthermore, we provide a detailed analysis of the level of receptor flexibility observed in docking results for different classes of residues and elucidate potential avenues for further improvement. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
The results of cognate docking with the prepared Astex dataset provided by the organizers of the "Docking and Scoring: A Review of Docking Programs" session at the 241st ACS national meeting are presented. The MOE software with the newly developed GBVI/WSA dG scoring function is used throughout the study. For 80?% of the Astex targets, the MOE docker produces a top-scoring pose within 2 ? of the X-ray structure. For 91?% of the targets a pose within 2 ? of the X-ray structure is produced in the top 30 poses. Docking failures, defined as cases where the top scoring pose is greater than 2 ? from the experimental structure, are shown to be largely due to the absence of bound waters in the source dataset, highlighting the need to include these and other crucial information in future standardized sets. Docking success is shown to depend heavily on data preparation. A "dataset preparation" error of 0.5?kcal/mol is shown to cause fluctuations of over 20?% in docking success rates.  相似文献   

12.
Structure-based virtual screening plays an important role in drug discovery and complements other screening approaches. In general, protein crystal structures are prepared prior to docking in order to add hydrogen atoms, optimize hydrogen bonds, remove atomic clashes, and perform other operations that are not part of the x-ray crystal structure refinement process. In addition, ligands must be prepared to create 3-dimensional geometries, assign proper bond orders, and generate accessible tautomer and ionization states prior to virtual screening. While the prerequisite for proper system preparation is generally accepted in the field, an extensive study of the preparation steps and their effect on virtual screening enrichments has not been performed. In this work, we systematically explore each of the steps involved in preparing a system for virtual screening. We first explore a large number of parameters using the Glide validation set of 36 crystal structures and 1,000 decoys. We then apply a subset of protocols to the DUD database. We show that database enrichment is improved with proper preparation and that neglecting certain steps of the preparation process produces a systematic degradation in enrichments, which can be large for some targets. We provide examples illustrating the structural changes introduced by the preparation that impact database enrichment. While the work presented here was performed with the Protein Preparation Wizard and Glide, the insights and guidance are expected to be generalizable to structure-based virtual screening with other docking methods.  相似文献   

13.
Virtual screening benchmarking studies were carried out on 11 targets to evaluate the performance of three commonly used approaches: 2D ligand similarity (Daylight, TOPOSIM), 3D ligand similarity (SQW, ROCS), and protein structure-based docking (FLOG, FRED, Glide). Active and decoy compound sets were assembled from both the MDDR and the Merck compound databases. Averaged over multiple targets, ligand-based methods outperformed docking algorithms. This was true for 3D ligand-based methods only when chemical typing was included. Using mean enrichment factor as a performance metric, Glide appears to be the best docking method among the three with FRED a close second. Results for all virtual screening methods are database dependent and can vary greatly for particular targets.  相似文献   

14.
Protein‐ligand docking is a commonly used method for lead identification and refinement. While traditional structure‐based docking methods represent the receptor as a rigid body, recent developments have been moving toward the inclusion of protein flexibility. Proteins exist in an interconverting ensemble of conformational states, but effectively and efficiently searching the conformational space available to both the receptor and ligand remains a well‐appreciated computational challenge. To this end, we have developed the Flexible CDOCKER method as an extension of the family of complete docking solutions available within CHARMM. This method integrates atomically detailed side chain flexibility with grid‐based docking methods, maintaining efficiency while allowing the protein and ligand configurations to explore their conformational space simultaneously. This is in contrast to existing approaches that use induced‐fit like sampling, such as Glide or Autodock, where the protein or the ligand space is sampled independently in an iterative fashion. Presented here are developments to the CHARMM docking methodology to incorporate receptor flexibility and improvements to the sampling protocol as demonstrated with re‐docking trials on a subset of the CCDC/Astex set. These developments within CDOCKER achieve docking accuracy competitive with or exceeding the performance of other widely utilized docking programs. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
Virtual screening has become a popular tool to identify novel leads in the early phases of drug discovery. A variety of docking and scoring methods used in virtual screening have been the subject of active research in an effort to gauge limitations and articulate best practices. However, how to best utilize different scoring functions and various crystal structures, when available, is not yet well understood. In this work we use multiple crystal structures of PI3 K-γ in both prospective and retrospective virtual screening experiments. Both Glide SP scoring and Prime MM-GBSA rescoring are utilized in the prospective and retrospective virtual screens, and consensus scoring is investigated in the retrospective virtual screening experiments. The results show that each of the different crystal structures that was used, samples a different chemical space, i.e. different chemotypes are prioritized by each structure. In addition, the different (re)scoring functions prioritize different chemotypes as well. Somewhat surprisingly, the Prime MM-GBSA scoring function generally gives lower enrichments than Glide SP. Finally we investigate the impact of different ligand preparation protocols on virtual screening enrichment factors. In summary, different crystal structures and different scoring functions are complementary to each other and allow for a wider variety of chemotypes to be considered for experimental follow-up.  相似文献   

16.
Target-based virtual screening is increasingly used to generate leads for targets for which high quality three-dimensional (3D) structures are available. To allow large molecular databases to be screened rapidly, a tiered scoring scheme is often employed whereby a simple scoring function is used as a fast filter of the entire database and a more rigorous and time-consuming scoring function is used to rescore the top hits to produce the final list of ranked compounds. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approaches are currently thought to be quite effective at incorporating implicit solvation into the estimation of ligand binding free energies. In this paper, the ability of a high-throughput MM-PBSA rescoring function to discriminate between correct and incorrect docking poses is investigated in detail. Various initial scoring functions are used to generate docked poses for a subset of the CCDC/Astex test set and to dock one set of actives/inactives from the DUD data set. The effectiveness of each of these initial scoring functions is discussed. Overall, the ability of the MM-PBSA rescoring function to (i) regenerate the set of X-ray complexes when docking the bound conformation of the ligand, (ii) regenerate the X-ray complexes when docking conformationally expanded databases for each ligand which include "conformation decoys" of the ligand, and (iii) enrich known actives in a virtual screen for the mineralocorticoid receptor in the presence of "ligand decoys" is assessed. While a pharmacophore-based molecular docking approach, PhDock, is used to carry out the docking, the results are expected to be general to use with any docking method.  相似文献   

17.
Virtual screening (VS) can be accomplished in either ligand- or structure-based methods. In recent times, an increasing number of 2D fingerprint and 3D shape similarity methods have been used in ligand-based VS. To evaluate the performance of these ligand-based methods, retrospective VS was performed on a tailored directory of useful decoys (DUD). The VS performances of 14 2D fingerprints and four 3D shape similarity methods were compared. The results revealed that 2D fingerprints ECFP_2 and FCFP_4 yielded better performance than the 3D Phase Shape methods. These ligand-based methods were also compared with structure-based methods, such as Glide docking and Prime molecular mechanics generalized Born surface area rescoring, which demonstrated that both 2D fingerprint and 3D shape similarity methods could yield higher enrichment during early retrieval of active compounds. The results demonstrated the superiority of ligand-based methods over the docking-based screening in terms of both speed and hit enrichment. Therefore, considering ligand-based methods first in any VS workflow would be a wise option.  相似文献   

18.
This paper describes the excellent performance of a newly developed scoring function (SF), based on the semiempirical QM (SQM) PM6-D3H4X method combined with the conductor-like screening implicit solvent model (COSMO). The SQM/COSMO, Amber/GB and nine widely used SFs have been evaluated in terms of ranking power on the HSP90 protein with 72 biologically active compounds and 4469 structurally similar decoys. Among conventional SFs, the highest early and overall enrichment measured by EF1 and AUC% obtained using single-scoring-function ranking has been found for Glide SP and Gold-ASP SFs, respectively (7, 75 % and 3, 76 %). The performance of other standard SFs has not been satisfactory, mostly even decreasing below random values. The SQM/COSMO SF, where P−L structures were optimised at the advanced Amber level, has resulted in a dramatic enrichment increase (47, 98 %), almost reaching the best possible receiver operator characteristic (ROC) curve. The best SQM frame thus inserts about seven times more active compounds into the selected dataset than the best standard SF.  相似文献   

19.
A mixed parallel scheme that combines message passing interface (MPI) and multithreading was implemented in the AutoDock Vina molecular docking program. The resulting program, named VinaLC, was tested on the petascale high performance computing (HPC) machines at Lawrence Livermore National Laboratory. To exploit the typical cluster‐type supercomputers, thousands of docking calculations were dispatched by the master process to run simultaneously on thousands of slave processes, where each docking calculation takes one slave process on one node, and within the node each docking calculation runs via multithreading on multiple CPU cores and shared memory. Input and output of the program and the data handling within the program were carefully designed to deal with large databases and ultimately achieve HPC on a large number of CPU cores. Parallel performance analysis of the VinaLC program shows that the code scales up to more than 15K CPUs with a very low overhead cost of 3.94%. One million flexible compound docking calculations took only 1.4 h to finish on about 15K CPUs. The docking accuracy of VinaLC has been validated against the DUD data set by the re‐docking of X‐ray ligands and an enrichment study, 64.4% of the top scoring poses have RMSD values under 2.0 Å. The program has been demonstrated to have good enrichment performance on 70% of the targets in the DUD data set. An analysis of the enrichment factors calculated at various percentages of the screening database indicates VinaLC has very good early recovery of actives. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号