首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work we introduce a new series of ratiometric oxygen sensors based on phosphorescent cyclometalated iridium centers partnered with organic coumarin fluorophores. Three different cyclometalating ligands and two different pyridyl-containing coumarin types were used to prepare six target complexes with tunable excited-state energies. Three of the complexes display dual emission, with fluorescence arising from the coumarin ligand, and phosphorescence from either the cyclometalated iridium center or the coumarin. These dual-emitting complexes function as ratiometric oxygen sensors, with the phosphorescence quenched under O2 while fluorescence is unaffected. The use of blue-fluorescent coumarins results in good signal resolution between fluorescence and phosphorescence. Moreover, the sensitivity and dynamic range, measured with Stern–Volmer analysis, can be tuned two orders of magnitude by virtue of our ability to synthetically control the triplet excited-state ordering. The complex with cyclometalated iridium 3MLCT phosphorescence operates under hyperoxic conditions, whereas the two complexes with coumarin-centered phosphorescence are sensitive to very low levels of O2 and function as hypoxic sensors.

Cyclometalated iridium(iii) coumarin complexes with improved signal resolution for ratiometric oxygen sensing are described. Dynamic ranges are tunable over >2 orders of magnitude.  相似文献   

2.
[Structure: see text]. This study demonstrated that Zinpyr-1*Zn2+ acts as a fluorescent and colorimetric sensor for pyrophosphate at pH 7.4. In addition, Zinpyr-1*Cu2+ and DIARB-1*Cu2+ complexes were found to act as selective fluorescent sensors for pyrophosphate. Furthermore, the chemosensors Zinpyr-1*Zn2+ and Zinpyr-1*Cu2+ show highly selective and ratiometric fluorescence changes for pyrophosphate compared with H2PO4-.  相似文献   

3.
We have connected a borondipyrromethene (BODIPY) donor to the 5′ position of a tetramethylrhodamine (TMR) acceptor to form a high efficiency (over 99 %) intramolecular fluorescence resonance energy transfer (FRET) cassette, BODIPY–rhodamine platform (BRP). While the good spectral overlap between the emission of BODIPY and the absorption of TMR was one favorable factor, another feature of this FRET system was the rigid and short biphenyl spacer that favored efficient through‐bond energy transfer. More importantly, in this system, the 2′‐carboxyl group of the rhodamine unit was preserved for the further modifications, which was as convenient as those carbonyl groups on the original rhodamines without connection to donors. For this reason, BRP is clearly differentiated from the previous ratiometric sensors based on donor rhodamine systems. To illustrate its value as a versatile platform, we introduced typical Hg2+ receptors into BRP, through convenient one‐pot reactions on the 2′‐carboxyl group, and successfully developed two ratiometric sensors, BRP‐1 and BRP‐2, with different spirocyclic receptors that recognized Hg2+ on different reaction mechanisms. Upon excitation at a single wavelength (488 nm), at which only BODIPY absorbed, both of the FRET sensors exhibited clear Hg2+‐induced changes in the intensity ratio of the two strong emission bands of BODIPY and rhodamine. It should be noted that these ratiometric Hg2+ sensors exhibited excellent sensitivity and selectivity Hg2+, as well as pH insensitivity, which was similar to the corresponding ‘turn‐on’ rhodamine sensors. While both ratiometric probes were applicable for Hg2+ imaging in living cells, BRP‐1 exhibited higher sensitivity and faster responses than BRP‐2. Our investigation indicated that on a versatile platform, such as BRP, a large number of highly efficient ratiometric sensors for transition‐metal ions could be conveniently developed.  相似文献   

4.
The ability of new chelate ligands, benzoxazol-5-yl-alanine derivatives substituted in position 2 by heteroaromatic substituent, to form complexes with selected metal ions in acetonitrile are studied by means of absorption and steady-state and time-resolved fluorescence spectroscopy. Among the ligands studied, only azaaromatic derivatives form stable complexes with transition metal ions in the ground state. Their absorption bands are bathochromically shifted enabling to use those ligands as ratiometric sensors. The fluorescence of each ligand is quenched by metal ions, however, in the presence of Cd(II) and Zn(II) ions a new red shifted emission band is observed.   相似文献   

5.
Ratiometric fluorescent probes are of great importance in research, because a built‐in correction for environmental effects can be provided to reduce background interference. However, the traditional ratiometric fluorescent probes require two luminescent materials with different emission bands. Herein a novel ratiometric probe based on a single‐wavelength‐emitting material is reported. The probe works by regulating the luminescent property of graphene quantum dots with UV illumination as activator. The ratiometric sensor shows high sensitivity and specificity for iron ions. Moreover, the ratiometric sensor was successfully employed to monitor ferritin levels in Sprague Dawley rats with chemical‐induced acute liver damage. The proposed single‐wavelength ratiometric fluorescent probe may greatly broaden the applicability of ratiometric sensors in diagnostic devices, medical applications, and analytical chemistry.  相似文献   

6.
Iron(II) complexes of the macrocyclic ligands 1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane (TCMC) and (1S,4S,7S,10S)-1,4,7,10-tetrakis(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane (STHP) contain a highly stabilized Fe(II) center in the high-spin state, which is encapsulated by an octadentate macrocycle. The complexes are resistant to acid, metal cations, phosphate, carbonate, and oxygen in aqueous solution. [Fe(TCMC)](2+) contains exchangeable amide protons, and [Fe(STHP)](2+) contains exchangeable protons attributed to alcohol OH donors, which give chemical exchange saturation transfer (CEST) peaks at physiological pH and 37 °C at 50 and 54 ppm from bulk water, respectively. The distinct pH dependence of the CEST peak of the two complexes over the range of pH 6-8 shows that these two groups may be useful in the development of ratiometric pH sensors based on iron(II).  相似文献   

7.
Synthesis and targeted delivery of dendrimer-based fluorescent biosensors in living HeLa cells are reported. Following electroporation dendrimers are shown to display specific subcellular localization depending on their size and surface charge and this property is preserved when they are functionalized with sensing moieties. We analyze the case of double dendrimer conjugation with pH-sensitive and pH-insensitive molecules leading to the realization of ratiometric pH sensors that are calibrated in vitro and in living cells. By tuning the physicochemical properties of the dendrimer scaffold sensors can be targeted to specific cellular compartments allowing selective pH measurements in different organelles in living cells. In order to demonstrate the modularity of this approach we present three different pH sensors with tuned H(+) affinity by appropriately choosing the pH-sensitive dye. We argue that the present methodology represents a general approach toward the realization of targetable ratiometric sensors suitable to monitor biologically relevant ions or molecules in living cells.  相似文献   

8.
Zn(2+) plays important roles in various biological systems; as a result, the development of tools that can visualize chelatable Zn(2+) has attracted much attention recently. We report here newly synthesized fluorescent sensors for Zn(2+), ZnAF-Rs, whose excitation maximum is shifted by Zn(2+) under physiological conditions. Thus, these sensors enable ratiometric imaging, which is a technique to reduce artifacts by minimizing the influence of extraneous factors on the fluorescence of a probe. Ratiometric measurement can provide precise data, and some probes allow quantitative detection. ZnAF-Rs are the first ratiometric fluorescent sensors for Zn(2+) that enable quantitative analysis under physiological conditions. ZnAF-Rs also possess suitable K(d) for applications, and high selectivity against other biologically relevant cations, especially Ca(2+). Using these probes, changes of intracellular Zn(2+) concentration in cultured cells were monitored successfully. We believe that these probes will be extremely useful in studies on the biological functions of Zn(2+).  相似文献   

9.
Ratiometric sensors generally couple binding events or chemical reactions at a distal site to changes in the fluorescence of a core fluorophore scaffold. However, such approaches are often hindered by spectral overlap of the product and reactant species. We provide a strategy to design ratiometric sensors that display dramatic spectral shifts by leveraging the chemoselective reactivity of novel functional groups inserted within fluorophore scaffolds. As a proof‐of‐principle, fluorophores containing a borinate ( RF620 ) or silanediol ( SiOH2R ) functionality at the bridging position of the xanthene ring system are developed as endogenous H2O2 sensors. Both these fluorophores display far‐red to near‐infrared excitation and emission prior to reaction. Upon oxidation by H2O2 both sensors are chemically converted to tetramethylrhodamine, producing significant (≥66 nm) blue‐shifts in excitation and emission maxima. This work provides a new concept for the development of ratiometric probes.  相似文献   

10.
Collier BB  Singh S  McShane M 《The Analyst》2011,136(5):962-967
Luminescent sensors incorporating two luminophores, an indicator and a reference, offer many advantages over intensity measurements from sensors made with one indicator dye. Quantum dots have yet to be widely employed as insensitive reference luminophores in such systems. This work describes the use of near-infrared emitting quantum dots in conjunction with a long-lifetime platinum(II) porphyrin phosphor in a microsphere-based, ratiometric oxygen sensor. The process for self-assembly of the nanocomposite system was developed, and the response and photostability of the prototypes were investigated. Results indicate the sensors possess excellent sensitivity (K(SV) = 0.00826 μM(-1)) at oxygen concentrations below 300 μM and were resistant to photobleaching. The sensor luminophores displayed minimal spectral overlap and little interference from excitation light, preventing the need for optical filters. A reversible photoenhancement of the quantum dot signal was also observed when exposed for extended periods of time. This work demonstrates the advantages of incorporating long-wavelength quantum dots into ratiometric intensity sensing schemes and highlights some key limitations that must be considered in their use.  相似文献   

11.
The homeostasis of mitochondrial pH (pHm) is crucial in cell physiology. Developing small-molecular fluorescent sensors for the ratiometric detection of pHm fluctuation is highly demanded yet challenging. A ratiometric pH sensor, Mito-pH, was constructed by integrating a pH-sensitive FITC fluorophore with a pH-insensitive hemicyanine group. The hemicyanine group also acts as the mitochondria targeting group due to its lipophilic cationic nature. Besides its ability to target mitochondria, this sensor provides two ratiometric pH sensing modes, the dual excitation/dual emission mode (Dex/Dem) and dual excitation (Dex) mode, and its linear and reversible ratiometric response range from pH 6.15 to 8.38 makes this sensor suitable for the practical tracking of pHm fluctuation in live cells. With this sensor, stimulated pHm fluctuation has been successfully tracked in a ratiometric manner via both fluorescence imaging and flow cytometry.  相似文献   

12.
In this communication, we report that 9-aryl-1,2-dihydropyrrolo[3,4-b]indolizin-3-one (Seoul-Fluor) can serve as a potential platform for colorful ratiometric fluorescent pH sensors by simple incorporation of pH responsive elements on Seoul-Fluor. Seoul-Fluor-based fluorescent pH sensors allow the emission- and pH-tuning ability upon protonation by varying their pK(a) values and electronic characteristics of substituents by a rational design.  相似文献   

13.
Two ratiometric fluorescence and colorimetric anion sensors were designed and synthesized according to simple Schiff base reaction. Two compounds 1 and 2 were characterized by ESI–MS, elemental analyses and 1H NMR. The sensors could give fast and visible color changes from yellow to red upon presence of the strong basic anions such as acetate ion. In particular, two compounds exhibited marked blue shifts (about 136 nm) in their emission spectra, when interacting with anions. Accordingly, the compounds 1 and 2 could act as real-time ratiometric fluorescence and colorimetric sensors for anions.  相似文献   

14.
Considering size effect and functionalized pore interaction dyes guests and MOFs hosts, 4-aminonaphthalimide was successfully introduced into the pore of LnMOF for the first time and constructed 4-ANA⊂LnMOF luminescent composites with excellent dual-emission properties. A series of temperature-dependent luminescence test results show that 4-ANA⊂Gd4L3 can be used as a reversible ratiometric luminescent temperature sensor. The functional construction method provides ideas for the development of clear purpose novel dual-emission dye⊂LnMOF ratiometric luminescent sensors.  相似文献   

15.
Electrochemical biosensors are an increasingly attractive option for the development of a novel analyte detection method, especially when integration within a point-of-use device is the overall objective. In this context, accuracy and sensitivity are not compromised when working with opaque samples as the electrical readout signal can be directly read by a device without the need for any signal transduction. However, electrochemical detection can be susceptible to substantial signal drift and increased signal error. This is most apparent when analysing complex mixtures and when using small, single-use, screen-printed electrodes. Over recent years, analytical scientists have taken inspiration from self-referencing ratiometric fluorescence methods to counteract these problems and have begun to develop ratiometric electrochemical protocols to improve sensor accuracy and reliability. This review will provide coverage of key developments in ratiometric electrochemical (bio)sensors, highlighting innovative assay design, and the experiments performed that challenge assay robustness and reliability.  相似文献   

16.
The market share of noncontact temperature sensors is expending due to fast technological and medical evolutions. In the wide variety of noncontact sensors, lanthanide-based temperature sensors stand out. They benefit from high photostability, relatively long decay times and high quantum yields. To circumvent their low molar light absorption, the incorporation of a light-harvesting antenna is required. This Review provides an overview of the nitrogen-rich antennae in lanthanide-based temperature sensors, emitting in the visible light spectrum, and discusses their temperature sensor ability. The N-rich ligands are incorporated in many different platforms. The investigation of different antennae is required to develop temperature sensors with diverse optical properties and to create a diverse offer for the multiple application fields. Molecular probes, consisting of small molecules, are first discussed. Furthermore, the thermometer properties of ratiometric temperature sensors, based on di- and polynuclear complexes, metal–organic frameworks, periodic mesoporous organosilicas and porous organic polymers, are summarized. The antenna mainly determines the application potential of the ratiometric thermometer. It can be observed that molecular probes are operational in the broad physiological range, metal–organic frameworks are generally very useful in the cryogenic region, periodic mesoporous organosilica show temperature dependency in the physiological range, and porous organic polymers are operative in the cryogenic-to-medium temperature range.  相似文献   

17.
Advances in nanoparticle technology have recently offered new tools to the bioanalytical field of research. In particular, new nanoparticle‐based sensors have appeared able to give quantitative information about different species (ions, metabolites, biomolecules) in biosamples through ratiometric measurements. This article describes the methodologies developed so far in the design of such nanosensors. In particular, the different approaches to immobilize fluorescent chemosensor dyes to nanoparticles are presented. Concept designs of ratiometric nanosensors in terms of composition and architecture are also described and illustrated with examples taken from the literature.  相似文献   

18.
Cao Y  Lee Koo YE  Kopelman R 《The Analyst》2004,129(8):745-750
150-250 nm Poly(decyl methacrylate)(PDMA) fluorescent ratiometric nanosensors for dissolved oxygen have been developed. Platinum octaethylporphine ketone (PtOEPK), the oxygen-sensitive dye, and octaethylporphyrin (OEP), the oxygen-insensitive dye, have been incorporated into PDMA nanoparticles to make the sensors ratiometric. Based on the corresponding Stern-Volmer plot, these nanosensors exhibit almost complete linearity over the whole range of dissolved molecular oxygen from 0 to 42.5 ppm (deoxygenated to pure oxygen-bubbled water). The overall quenching response is up to 97.5%, the best so far for all dissolved oxygen optical sensors. These PEBBLE nanosensors also show very good reversibility and stability to leaching and photobleaching, as well as very short response times and no perturbation by proteins. In human plasma they demonstrate a robust oxygen sensing capability, little affected by light scattering and autofluorescence. Potential applications include intracellular oxygen imaging and microresolved pressure profiles in biological and other heterogenous environments.  相似文献   

19.
A new Vilsmeier-type reaction is suggested for the synthesis of novel indocarbocyanine pH sensors, which are fluorescent when protonated but nonfluorescent upon proton abstraction. These sensors show significant ratiometric UV-visible as well as fluorescence spectral changes upon subtle variation of pHs with pKa values near neutral.  相似文献   

20.
It is significant for cell physiology to keep the homeostasis of p H, and it is highly demanded to develop ratiometric fluorescent sensors toward p H. In this work, under mild condition, through the electrostatic interaction between carbon nanodots(CDs) and organic molecules, two novel ratiometric fluorescence hybrid nanosensors were fabricated for sensing acidic p H. These nanohybrid systems possess dual emission peaks at 455 and 527 nm under a single excitation wavelength of 380 nm in acidic p H condition.With the increasing of p H, the fluorescence of the 1,8-naphthalimide derivative completely quenches,while the blue fluorescence of CDs keeps constant. Furthermore, the CDsàorganic molecular nanohybrids exhibit excellent anti-disturbance ability, reversible p H sensing ability, and a linear response range in wide p H range respectively. Besides the ability to target lysosome, with one of the nanosensor, stimulated p H change has been successfully tracked in a ratiometric manner via fluorescence imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号