首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In previous works, it has been shown that a standard ultraviolet-visible detection system can be used for quantitative analysis of heterogeneous systems (dispersed supermicron particles) in field-flow fractionation (FFF) by single peak area measurements. Such an analysis method was shown to require either experimental measurements (standardless analysis) or an accurate model (absolute analysis) to determine the extinction efficiency of the particulate samples. In this work, an experimental design to assess absolute analysis in FFF through prediction of particles' optical extinction is presented. Prediction derives from the semiempirical approach by van de Hulst and Walstra. Special emphasis is given to the restriction of the experimental domain of instrumental conditions within which absolute analysis is allowed. Validation by statistical analysis and a practical application to real sample recovery studies are also given.  相似文献   

2.
Flow field-flow fractionation (F4) is the gentlest flow-assisted separation technique for analysis of macromolecules. The use of an empty channel as separation device and of a second mobile phase flow as perpendicular field enable F4 to separate analytes under native conditions without any modification of their original structure. Because of this unique peculiarity, F4 has been shown to be ideal for "gentle" separation of biological samples, for example intact proteins and protein complexes, since its early development. Today's F4 is an appealing technique which complements most established separation techniques, for example liquid chromatography and electrophoresis. The number of applications that show the unique advantages of F4 for analysis of protein samples is constantly increasing. In particular, F4 is finding increasing application on very high-molecular-weight species such as protein oligomers, aggregates, and complexes. This review critically discusses recent literature on the application of F4 to proteins. Either stand-alone or coupled with other characterization techniques, F4 is particularly promising for quality control of protein therapeutics, characterization of amyloid proteins, lipoprotein profiling, and as a pre-MS separation step in proteomics.  相似文献   

3.
Field-flow fractionation is a convenient separation method for the analysis of biomacromolecules and biological particles. A number of publications in recent years have demonstrated the extent of applications of this method in the life sciences. A review of the most important of them is presented.  相似文献   

4.
Micro-thermal field-flow fractionation (mu-TFFF) was applied to the separation of polystyrene latices. This new high-resolution technique allows determination of the particle size distribution (PSD) if carried out under optimized experimental conditions. The optimum temperature of the accumulation wall, which influences the relaxation processes and, consequently, the zone broadening, was chosen on the basis of our prior work. The flow rate was chosen as a compromise between the theoretical optimum value, which is very low because the diffusion coefficients of the colloidal particles are very small, and a value allowing performance of the PSD analysis in a reasonable time. These experimental conditions can be manipulated easily due to the high versatility of mu-TFFF, which follows from a large decrease of the heat energy flux across the channel with its reduced dimensions in comparison with standard TFFF. The PSDs obtained from mu-TFFF data are compared with results from quasi-elastic laser light scattering (QELS) and transmission electron microscopy (TEM). It has been found that a baseline resolution of a model mixture of two samples of close average particle diameters can be achieved by an appropriate choice of the temperature drop in mu-TFFF, whereas only a broad, unresolved PSD of the mixed sample was obtained from the QELS measurement. The TEM of the mixed sample revealed the presence of two particle size populations. However, the number of particles which are practically counted on a TEM picture is several orders of magnitude lower than the number of particles taken into account in mu-TFFF or QELS. Consequently, the PSD obtained from the TEM did not represent the whole sample. Comparison of mu-TFFF with modern hydrodynamic chromatography (HC) has shown that the methods exhibit roughly the same resolution and time of analysis. Nevertheless, mu-TFFF is a more universal technique because the separation of the colloidal particles or of the macromolecules within a broad range of molar masses is carried out on the same channel, as demonstrated previously.  相似文献   

5.
Kang D  Oh S  Reschiglian P  Moon MH 《The Analyst》2008,133(4):505-515
Flow field-flow fractionation (FlFFF) has been utilized for size-based separation of rat liver mitochondria. Collected fractions of mitochondria of various sizes were examined by confocal microscopy, and mitochondria of each fraction were lysed and analyzed by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) for the comparison of protein patterns in differently sized mitochondria by densitometric measurements, and for protein characterization of some gel spots with nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry (nLC-ESI-MS-MS). FlFFF fractions of the mitochondria were also tryptically digested for shotgun proteomic characterization of mitochondrial proteins/peptides by nLC-ESI-MS-MS. Peak area (integrated ion counts) of some peptides extracted from LC-MS chromatograms were examined at different fractions for the quantitative comparison. Among 130 proteins, 105 unique proteins were found to be mitochodrial from the off-line combination of FlFFF and nLC-ESI-MS-MS analysis. It also showed that 23 proteins were found in all fractions but some proteins were found exclusively in certain fractions. Among 25 proteins listed from other subcellular species, seven proteins were known to exist in mitochondria as well as in other subcellular locations, which may support the possible translocation or multiple localizations of proteins among organelles. This study demonstrated effective use of FlFFF for the isolation and/or enrichment of intact mitochondria isolated from cells, as well as its potential use for the fractionation of other subcellular components in the framework of subcellular functional proteomics.  相似文献   

6.
7.
Asymmetrical flow field-flow fractionation (AF4) was used as a fractionation technique to investigate the molecular heterogeneity of poly(styrene-b-isoprene) diblock copolymers synthesized by either sequential living anionic polymerization or coupling of living precursor blocks. AF4 coupled to multi-angle laser light scattering (MALLS), refractive index (RI), and ultraviolet (UV) detectors was used to separate the diblock copolymers from the homopolymers and coupling products, and the molar masses of the different components were analyzed. In order to get more information about the separated block copolymers, homopolymers, and coupling products, fractions were collected directly after the AF4 channel. The collected fractions were analyzed offline by 1H NMR to provide identification of the different species and additional information on the true chemical composition, and the microstructure of the diblock copolymer was obtained.
Figure
?  相似文献   

8.
In the present paper, the capabilities of differential field-flow fractionation, i. e., the determination of an incremental quantity of a colloidal species, e. g., an uptake adsorbed mass, determined by the joint use of two independent FFF measurements, over a species and the same modified species respectively, are considered. The different error types, those related to the retention time determinations and those coming from the operating parameter fluctuations were considered. The different components were computed with reference to SdFFF determinations of bare polystyrene (PS) submicronic particles and the same PS particles covered by IgG. Comparison was made between theoretically computed precision and experiments. The error coming from the experimental measurement of retention times was identified to be the main source of errors. Accordingly, it was possible to make explicit the detection limits and the confidence intervals of the adsorbed mass uptake, as a function of experimental quantities such as the retention ratio, the detector calibration ratio, the injected quantity, the baseline noise, and the void time relative error. An experimentally determined and theoretically foreseen dependence of both the experimental detection and confidence limits (approximately +/- 10(-17) g) on the square root of the injected concentration, for constant injected volume, was found.  相似文献   

9.
10.
Carbon black is one of the most useful particulate materials in the industrial field. Among the various physical properties of carbon black, size and size distribution are the most important properties to affect the quality of a final product. However, it is difficult to measure the exact particle size of carbon black since it suffers unavoidable interference from flocculation. In this study, the effects of various factors on the dispersion of industrial carbon blacks were investigated for the determination of size and size distribution of carbon black particles. Sedimentation and flow field-flow fractionations (FIFFF) were used to determine the size of carbon black, and their optimum analytical conditions were tested by changing surfactant, pH, ionic strength, and method of dispersion. The results showed that surfactant structure and its concentration played significant roles in dispersion stability. Carbon black was dispersed well with a nonionic surfactant with a pH of around 8 and an ionic strength of 0.003 M. The mean diameters measured from two types of FFF and photon correlation spectroscopy are in good agreement. This study demonstrates the potential of sedimentation and flow FFF for analyzing highly adsorptive industrial particles and guides for sample preparation.  相似文献   

11.
Thermal field-flow fractionation coupled with online multiangle light scattering, differential refractive index and quasielastic light scattering (ThFFF-MALS/dRI/QELS) was used to simultaneously determine the molecular weight (MW) and composition of polystyrene-poly(n-butyl acrylate) (PS-PBA) and polystyrene-poly(methyl acrylate) (PS-PMA) copolymers. The online measurement of the normal diffusion coefficient (D) by QELS allowed calculation of the copolymer thermal diffusion coefficient (D(T)) of sample components as they eluted from the ThFFF channel. DT was found to be independent of MW for copolymers with similar compositions and dependent on composition for copolymers with similar MW in a non-selective solvent. By using a solvent that is non-selective to both blocks of the copolymer, it was possible to establish a universal calibration plot of DT versus mole fraction of one of the monomer chemistries comprising the copolymer. PS-PBA and PS-PMA linear diblock polymers were determined to vary in composition from 100/0 to 20/80 wt% PS/acrylate and ranged in MWs between 30 and 360 kDa. The analysis of a PS-PBA miktoarm star copolymer revealed a polydisperse material with a weight percent PBA of 50-75% and MW ranging from 100 to 900 kDa. The presented ThFFF-MALS/dRI/QELS method allowed rapid characterization of polymers with MW and chemical distributions in a single analysis.  相似文献   

12.
Synthesis and applications of new functional nanoparticles are topics of increasing interest in many fields of nanotechnology. Chemical modifications of inorganic nanoparticles are often necessary to improve their features as spectroscopic tracers or chemical sensors, and to increase water solubility and biocompatibility for applications in nano-biotechnology. Analysis and characterization of structured nanoparticles are then key steps for their synthesis optimization and final quality control. Many properties of structured nanoparticles are size-dependent. Particle size distribution analysis then provides fundamental analytical information. Asymmetrical flow field-flow fractionation (AF4) with multi-angle light scattering (MALS) detection is able to size-separate and to characterize nanosized analytes in dispersion. In this work we focus on the central role of AF4-MALS to analyze and characterize different types of structured nanoparticles that are finding increasing applications in nano-biotechnology and nanomedicine: polymer-coated gold nanoparticles, fluorescent silica nanoparticles, and quantum dots. AF4 not only size-fractionated these nanoparticles and measured their hydrodynamic radius (rh) distribution but it also separated them from the unbound, relatively low-Mr components of the nanoparticle structures which were still present in the sample solution. On-line MALS detection on real-time gave the gyration radius (rg) distribution of the fractionated nanoparticles. Additional information on nanoparticle morphology was then obtained from the rh/rg index. Stability of the nanoparticle dispersions was finally investigated. Aggregation of the fluorescent silica nanoparticles was found to depend on the concentration at which they were dispersed. Partial release of the polymeric coating from water-soluble QDs was found when shear stress was induced by increasing flowrates during fractionation.  相似文献   

13.
A combination of gravitational split-flow thin (SPLITT) fractionation and sedimentation/steric field-flow fractionation (Sd/StFFF) has been used for continuous size-sorting of a sediment sample and for size analysis of the collected fractions. An IAEA (International Atomic Energy Agency) sediment material was separated into four size fractions (with theoretical size ranges <1.0, 1.0–3.0, 3.0–5.0, and >5.0 m in diameter) by means of a three-step gravitational SPLITT fractionation (GSF) for which the same GSF channel was used throughout. The GSF fractions were collected and examined by optical microscopy (OM) and by Sd/St FFF. The mean diameters of the GSF fractions measured by OM were within the size interval predicted by GSF theory, despite the theory assuming that all particles are spherical, which is not true for the sediment particles. The Sd/St FFF results showed that retention shifted toward shorter elution time (or larger size) than expected, probably because of the shape effect. The results from GSF, OM, and Sd/StFFF are discussed in detail.  相似文献   

14.
The use of flow field flow fractionation (FlFFF) for the separation and characterization of natural colloids and nanoparticles has increased in the last few decades. More recently, it has become a popular method for the characterization of manufactured nanoparticles. Unlike conventional filtration methods, FlFFF provides a continuous and high-resolution separation of nanoparticles as a function of their diffusion coefficient, hence the interest for use in determining particle size distribution. Moreover, when coupled to other detectors such as inductively coupled plasma-mass spectroscopy, light scattering, UV-absorbance, fluorescence, transmission electron microscopy, and atomic force microscopy, FlFFF provides a wealth of information on particle properties including, size, shape, structural parameters, chemical composition and particle-contaminant association. This paper will critically review the application of FlFFF for the characterization of natural colloids and natural and manufactured nanoparticles. Emphasis will be given to the detection systems that can be used to characterize the nanoparticles eluted from the FlFFF system, the obtained information and advantages and limitation of FlFFF compared to other fractionation and particle sizing techniques. This review will help users understand (i) the theoretical principles and experimental consideration of the FlFFF, (ii) the range of analytical tools that can be used to further characterize the nanoparticles after fractionation by FlFFF, (iii) how FlFFF results are compared to other analytical techniques and (iv) the range of applications of FlFFF for natural and manufactured NPs.  相似文献   

15.
16.
Summary The reversibility of adsorption of colloidal particles on the channel wall in Sedimentation Field-Flow Fractionation (SFFF), which is based on the variation of the ionic strength of the carrier solution, suggests a new method, for the separation and characterization of colloidal materials. This new method has been called Potential Barrier Field Flow Fractionation (PBFFF).  相似文献   

17.
The methodological approach used to robustly optimize the characterization of the polydisperse colloidal phase of drain water samples is presented. The approach is based on asymmetric flow field-flow fractionation coupled to online ultraviolet/visible spectrophotometry, multi-angle light scattering, and inductively coupled plasma mass spectrometry. Operating factors such as the amount of sample injected and the ratio between main-flow and cross-flow rates were considered. The evaluation of the injection and fractionation steps was performed considering the polydispersity index and the contribution to the polydispersity of the plate height, the recovery, the retention ratio and the size range of the fractionated colloids. This approach allows the polydispersity of natural colloid samples to be taken into consideration to achieve the most efficient and representative fractionation. In addition to the size characterization, elemental analysis was also evaluated using the recovery, precision, and limits of detection and quantification relative to a trace element of interest (copper) in drain water. To complete this investigation, the potential application of the methodology was assessed using several independent drain water samples from different soils. The contribution of the polydispersity to the plate height ranges from 4.8 to 8.9 cm with a mean precision of 6 %. The mean colloidal recovery was 81?±?3 %, and the mean retention ratio was 0.043–0.062. The limits of detection and quantification for copper were 0.6 and 1.8 μg L?1, respectively.  相似文献   

18.
Although the classical retention theory is used for interpreting data or optimizing separations in sedimentation field-flow fractionation (SedFFF), as in most other field-flow fractionation techniques, the assumption of a parabolic flow profile on which this theory is based is not rigorously correct in SedFFF because of the curvature of the channel walls. In order to examine quantitatively the influence of this effect, the relative velocity profile in SedFFF is obtained by solving the Navier-Stokes equation in cylindrical coordinates. Discrepancies found in the literature about the definition of the mean velocity in such channels are discussed. Relationships between mean velocity, flow-rate and pressure gradient are given. Approximating the velocity profile by a third-degree polynomial of the radial coordinate which provides the same slope as the exact profile at a reference wall, for small values of δ, the curvature ratio (ratio of the channel thickness to the mean curvature radius), shows that the adjustable parameter of the approximate profile, ν, is equal to ± δ/3, the sign depending on whether the reference wall is the inner or outer wall. The curvature ratio appears to be a good indicator of the error made on retention when using the straight channel approximation in retention theory. The error is quite small for typical SedFFF channels. It may have to be taken into account for precise determinations if thicker channels and/or miniaturized systems are used.  相似文献   

19.
Chen Z  Chauhan A 《Electrophoresis》2007,28(5):724-739
Electric field-flow fractionation (EFFF) is a separation technique that couples a lateral electric field with axial Poiseuille flow to separate particles on the basis of size and/or mobility. In unidirectional EFFF, the field rapidly decreases in time due to charging of the double layer. The field strength could be increased by performing EFFF with cyclic electric fields. In cyclic electric field-flow fractionation (CEFFF), a periodic voltage, which can be either sinusoidal or square-wave, is applied in the lateral direction. In this paper, we measure the electrochemical response of CEFFF, i.e., the current-time response for a given time-dependent voltage and then utilize this electrochemical response in a transport model to predict separation. The CEFFF device studied here comprises two gold-coated glass plates separated by a spacer. The transient current profiles are measured for a step change and cyclic square-shaped voltage. The current profile is compared with the equivalent circuit model, and is fitted to a sum of two decaying exponentials. The dependence of the electrochemical response on voltage, frequency, channel thickness, and salt concentration is studied. Next, the electrochemical data are utilized in the convection-diffusion equation to develop a model for separation by CEFFF. The equations are solved by using a combination of analytical and numerical techniques to determine the mean velocity and the dispersion coefficient of molecules, and to determine the effect of various parameters on the separation efficiency of the EFFF device. Also, the model predictions are compared with experimental data available in the literature.  相似文献   

20.
Elution time measurements of colloidal particles injected in a symmetrical flow field-flow fractionation (flow FFF) system when the inlet and outlet cross-flow connections are closed have been performed. This no-field method has been proposed earlier for void time (and void volume) determination in flow FFF Giddings et al. (1977). The elution times observed were much larger than expected on the basis of the channel geometrical volume and the flow rate. In order to explain these discrepancies, a flow model allowing the carrier liquid to flow through the porous walls toward the reservoirs located behind the porous elements and along these reservoirs was developed. The ratio between the observed elution time and expected one is found to depend only on a parameter which is a function of the effective permeability and thickness of the porous elements and of the channel thickness and length. The permeabilities of the frits used in the system were measured. Their values lead to predicted elution times in reasonable agreement with experimental ones, taking into account likely membrane protrusion inside the channel on system assembly. They comfort the basic feature of the flow model, in the no-field case. The carrier liquid mostly bypasses the channel to flow along the system mainly in the reservoir. It flows through the porous walls toward the reservoirs near channel inlet and again through the porous walls from the reservoirs to the channel near channel outlet before exiting the system. In order to estimate the extent of this bypassing process, it is desirable that the hydrodynamic characteristics of the permeable elements (permeability and thickness) are provided by flow FFF manufacturers. The model applies to symmetrical as well as asymmetrical flow FFF systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号