共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Hui Xu Junlong Zhang Yong Chen Hailin Lu Junxia Zhuang 《Journal of Solid State Electrochemistry》2014,18(3):813-819
Polyaniline doped with Zn2+ (PANI/Zn2+) films was synthesized by cyclic voltammetric method on stainless steel mesh substrates in 0.2 mol L?1 aniline and 0.5 mol L?1 sulfuric acid electrolyte with various concentrations of zinc sulfate (ZnSO4·7H2O). The structure and morphology of PANI and PANI/Zn2+ films were characterized by Fourier transform infrared, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy techniques, respectively. The electrochemical properties of PANI and PANI/Zn2+ films were investigated by cyclic voltammetry, galvanostatic charge–discharge test, and electrochemical impedance spectroscopy in 0.5 mol L?1 H2SO4 electrolyte in a three-electrode system. The results show that the surface morphology of PANI/Zn2+ is more rough than that of pure PANI. The specific capacitance of the PANI/Zn2+ film displays a larger specific capacitance of 738 F g?1, lower resistance, and better stability as compared with the pure PANI film. Thus, good capacitive performance demonstrates its potential superiority for supercapacitors. 相似文献
4.
Chen Qinlei Xia Zhengbin Zhang Yanhong Wang Shumin 《Journal of Solid State Electrochemistry》2019,23(12):3399-3408
Journal of Solid State Electrochemistry - Polyaniline/diazonium salt/TiO2 nanotube arrays (PANI/DZ/TiO2 NAs), as a supercapacitor electrode material, are fabricated by two-step anodic oxidation of... 相似文献
5.
A. Bello M. Fabiane D. Y. Momodu S. Khamlich J. K. Dangbegnon N. Manyala 《Journal of Solid State Electrochemistry》2014,18(9):2359-2365
We report on a non-covalent functionalization of graphene foam (GF) synthesized via chemical vapour deposition (CVD). The GF was treated with pyrene carboxylic acid (PCA) which acted as a source of oxygen and/or hydroxyl groups attached to the surface of the graphene foam for its electrochemical performance improvement. The modified graphene surface enabled a high pseudocapacitive effect on the GF. A specific capacitance of 133.3 F g?1, power density ~ 145.3 kW kg?1 and energy density ~ 4.7 W h kg?1 were achieved based on the functionalized foam in 6 M KOH aqueous electrolyte. The results suggest that non-covalent functionalization might be an effective approach to overcome the restacking problem associated with graphene electrodes and also signify the importance of surface functionalities in graphene-based electrode materials. 相似文献
6.
7.
A novel electrochemical sensing platform was developed that is based on the modification of a glassy carbon electrode with acetylene black and ionic liquids. The resulting electrode exhibited excellent electrocatalytic activity towards trifluralin in showing markedly increased redox peak currents. The experimental parameters affecting the response to trifluralin were optimized. Under optimal conditions, a linear response was obtained in the range from 80 nM to 12 µM of trifluralin (R?=?0.9994). The detection limit is 10 nM (at S/N?=?3) after open-circuit accumulation for 120 s. The method was successfully applied to determine trifluralin in soil samples. Features such as a large electroactive area, fast electron transfer and low background current make this composite electrode a promising platform for fabricating reliable electrochemical sensors for various species. 相似文献
8.
The electrochemical properties of benzoquinone and ferrocene monocarboxylic acid, which can be used as mediators for enzymatic reactions were studied at a polyaniline coated platinum electrode. Benzoquinone and ferrocene monocarboxylic acid were used in the catalytic cycle of a glucose oxidase-glucose reaction. 相似文献
9.
Stoller MD Murali S Quarles N Zhu Y Potts JR Zhu X Ha HW Ruoff RS 《Physical chemistry chemical physics : PCCP》2012,14(10):3388-3391
Chemically activated graphene ('activated microwave expanded graphite oxide', a-MEGO) was used as a cathode material for Li-ion hybrid supercapacitors. The performance of a-MEGO was first verified with Li-ion electrolyte in a symmetrical supercapacitor cell. Hybrid supercapacitors were then constructed with a-MEGO as the cathode and with either graphite or Li(4)Ti(5)O(12) (LTO) for the anode materials. The results show that the activated graphene material works well in a symmetrical cell with the Li-ion electrolyte with specific capacitances as high as 182 F g(-1). In a full a-MEGO/graphite hybrid cell, specific capacitances as high as 266 F g(-1) for the active materials at operating potentials of 4 V yielded gravimetric energy densities for a packaged cell of 53.2 W h kg(-1). 相似文献
10.
Journal of Solid State Electrochemistry - A simple, scalable approach is developed to fabricate a flexible hybrid paper electrode composed of the polyaniline/graphene and the carbon fiber... 相似文献
11.
Takei T Yonesaki Y Kumada N Kinomura N 《Langmuir : the ACS journal of surfaces and colloids》2008,24(16):8554-8560
The preparation of hybrid films of metal (Ti and Sn) phosphate nanosheets and polyaniline by simultaneous electrophoretic and electrolytic deposition was performed in an acetonitrile solvent. Emeraldine polyaniline was intercalated between the phosphate nanosheets with a monolayer arrangement. The obtained hybrid films were several tens of micrometers in thickness. The ratio of incorporated polyaniline to metal phosphate in the hybrid films reaches to around 0.45 and 0.30 at suitable concentrations of tetrabutylammonium hydroxide (TBAOH). These amounts correspond with occupancy of polyaniline in the interlayer gallery of several tens percent. Fractions of voids in a horizontal direction were around 22 and 1% in titanium phosphate/polyaniline and tin phosphate/polyaniline hybrid films, respectively. Thus, anodic electrodeposition makes it possible to form thick films of intercalation compounds of alpha-titanium and tin phosphates with polyaniline. These hybrid films were examined for redox activity. The cyclic voltammetry results of these films confirmed that the hybrid films have redox activity by polyaniline. For these voltammograms, the maximum current was observed in the tin phosphate/polyaniline hybrid deposited for 15 min. The redox activity of these hybrids possibly depends on the mesoscopic texture of the film, especially on the amount of voids in a horizontal direction. 相似文献
12.
Asen Parvin Shahrokhian Saeed Zad Azam Iraji 《Journal of Solid State Electrochemistry》2018,22(4):983-996
Journal of Solid State Electrochemistry - Polyaniline/graphene oxide (PANI/GO) co-doped with Zn2+ and Fe3+ was synthesized via a simple and low cost one-step chronoamperometry method on stainless... 相似文献
13.
《Electrochemistry communications》2008,10(6):859-863
In this paper, the unique properties of highly ordered mesoporous carbons modified glassy carbon electrode (OMCs/GE) are illustrated from comparison with carbon nanotubes modified glassy carbon electrode (CNTs/GE) for the electrochemical sensing applications. Electrochemical behaviors of eight kinds of inorganic and organic electroactive compounds were studied at OMCs/GE, which shows more favorable electron transfer kinetics than that at CNTs/GE. Especially, OMCs/GE exhibits remarkably strong and stable electrocatalytic response toward NADH compared with CNTs/GE. The ability of OMCs to promote electron transfer not only provides a new platform for the development of dehydrogenase-based bioelectrochemical devices, but also indicates a potential of OMCs in a wide range of sensing applications. OMCs prepared are the novel carbon electrode materials, exhibiting more favorable electrochemical reactivity than CNTs for the wide electrochemical sensing applications without pretreatments, while purification or end-opening processing was usually required in case of CNTs. 相似文献
14.
Fibriform polyaniline/nano-TiO2 composite as an electrode material for aqueous redox supercapacitors
Fibriform polyaniline/nano-TiO2 composite is prepared by one-step in situ oxidation polymerization of aniline in the presence of nano-TiO2 particles, which contains 80% conducting polyaniline by mass, with a conductivity of 2.45 S/cm at 25 °C. Its maximum specific capacitance is 330 F g?1 at a constant current density of 1.5 A g?1, and can be subjected to charge/discharge over 10,000 cycles in the voltage range of 0.05–0.55 V. 相似文献
15.
《化学研究与应用》2015,(7)
以对苯二胺为引发剂,用苯胺和氧化石墨烯(GO)为原料,采用化学原位聚合法制备了氧化石墨烯/聚苯胺(GP)复合材料,不添加任何表面活性剂和模板剂。采用傅里叶变换红外(FTIR)光谱、X射线粉末衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)对复合材料进行了物性表征,并对其电化学性能进行了测试。结果显示,复合材料保持了氧化石墨烯的基本形貌,聚苯胺纤维分布在氧化石墨烯层间及所形成的褶皱上。二者形成的二元纳米复合材料,发挥良好的协同作用,电化学性能得到了改善。当电流密度为0.5A·g-1时,复合材料的比电容可以达到623F·g-1,远大于石墨烯和聚苯胺单体的比电容。 相似文献
16.
Lei Jiang Jingwang Yan Ying Zhou Lixing Hao Rong Xue Liang Jiang Baolian Yi 《Journal of Solid State Electrochemistry》2013,17(11):2949-2958
Glucose-derived activated carbon (GAC)/reduced graphene oxide (RGO) composites are prepared by pre-carbonization of the precursors (aqueous mixture of glucose and graphene oxide) and KOH activation of the pyrolysis products. The effect of the mass ratio of graphene oxide (GO) in the precursor on the electrochemical performance of GAC/RGO composites as electrode materials for electrochemical capacitors is investigated. It is found that the thermally reduced graphene oxide sheets serves as a wrinkled carrier to support the activated carbon particles after activation. The pore size distribution and surface area are depended on the mass ratio of GO. Besides, the rate capability of GAC is improved by the introduction of GO in the precursor. The highest specific capacitance of 334 F g?1 is achieved for the GAC/RGO composite prepared from the precursor with a GO mass ratio of 3 %. 相似文献
17.
Xinhong zhou Lanfeng Li Shanmu Dong Xiao Chen Pengxian Han Hongxia Xu Jianhua Yao Chaoqun Shang Zhihong Liu Guanglei Cui 《Journal of Solid State Electrochemistry》2012,16(3):877-882
A high-performance conducting polymer-activated carbon composite electrode material was prepared by potentiostatic deposition of aniline on a hierarchically porous carbon, which was carbonized from the natural bamboo. The obtained composite combined the contribution of the unique properties of the activated carbon and pseudocapacitance of the deposited polyaniline layer. This active material possessed excellent rate capability and good cycle performance, over 92% of the original capacitance is retained after 1,000 cycles. The energy density of the composite can reach 47.5 W h kg−1 calculated only by active mass. It can be a good candidate for high-performance supercapacitor. 相似文献
18.
A novel, stable and sensitive non-enzymatic glucose sensor was developed by potentiostatically electrodepositing metallic Cu nanoparticles on graphene sheets. The electrochemical performance of the Cu-graphene sheets electrode for detection of glucose was investigated by cyclic voltammetry and chronamperometry. The Cu-graphene sheets electrode displayed a synergistic effect of copper nanoparticles and graphene sheets towards the oxidation of glucose in alkaline solution, showing higher oxidation current and negative shift in peak potential. At detection potential of 500 mV, the Cu-graphene electrode sensor presented a wide linear range up to 4.5 mM glucose with a detection limit of 0.5 μM (signal/noise = 3). In addition, the sensor responds very quickly (<2 s) with addition of glucose. Furthermore, the Cu-graphene sheets electrode exhibits high stability and selectivity to glucose, and the poisoning by chloride ion as well as interference from the oxidation of common interfering species (ascorbic, dopamine, uric acid and carbohydrate) are effectively avoided. The Cu-graphene sheets electrode allows highly selective and sensitive, stable and fast amperometric sensing of glucose, which is promising for the development of non-enzymatic glucose sensor. 相似文献
19.
20.
Wang S Gao Q Zhang Y Gao J Sun X Tang Y 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(5):1465-1472
A novel chemical oxidative polymerization approach has been proposed for the controllable preparation of organic-inorganic hybrid MoO(x)/polyaniline (PANI) nanocomposites based on the nanowire precursor of Mo(3)O(10)(C(6)H(8)N)(2)·2H(2)O with sub-nanometer periodic structures. The nanotubes, nanowires, and rambutan-like nanoparticles of MoO(x)/PANI were successfully obtained through simply modulating the pH values to 2.5-3.5, ≈2.0 and ≈1.0, respectively. Through systematic physicochemical characterization, such as scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and so forth, the composition and structure of MoO(x)/PANI hybrid nanocomposites are well confirmed. It is found that the nanowire morphology of the precursor is the key to achieve the one-dimensional (1D) structures of final products. A new polymerization-dissolution mechanism is proposed to explain the formation of such products with different morphologies, in which the match between polymerization and dissolution processes of the precursor plays the important role. This approach will find a new way to controllably prepare various organic-inorganic hybrid 1D nanomaterials especially for polymer-hybrid nanostructures. 相似文献