首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fe2O3/SiO2 nanocomposites were synthesized by mechanical alloying, using Fe and SiO2 powders as precursors. After 340 h milling, the sample essentially consists of hematite and amorphous silica. TEM images show hematite particles embedded in and surrounded by an amorphous silica matrix. A broad size distribution—5–50 nm—of hematite particles is found, and other group of very small—2–3 nm—unidentified particles are observed. Room temperature Mössbauer spectra show a paramagnetic doublet, which may correspond to a non-crystalline phase in the sample (probably the small unidentified particles), and a sextet corresponding to hematite. Magnetic properties were investigated by measuring hysteresis curves at different temperatures (5–300 K) and by zero-field-cooled (ZFC) and field-cooled (FC) magnetization curves (10 mT). The hysteresis loops were well fitted by a ferromagnetic contribution. No evidence of Morin transition is found down to 5 K.  相似文献   

2.
In this work, the thermal expansion coefficient (CTE) of a composite containing spherical particles surrounded by an inhomogeneous interphase embedded in an isotropic matrix is evaluated by means of a new model. The thermomechanical properties of the interphase are formulated as continuous radial functions. It is assumed that this third phase developed between the polymeric matrix and the filler particles contains both areas of absorption interaction in polymer surface layers onto filler particles as well as areas of mechanical imperfections. It can be said that the concept of boundary interphase is a useful tool to describe quantitatively the adhesion efficiency between matrix and particles and that there is an effect of this phase on the thermomechanical properties of the composite. The thickness and volume fraction of this phase were determined from heat capacity measurements for various filler contents. On the other hand, it is assumed that the particle arrangement (distribution) which can be considered as an influence of neighboring inclusions and their interaction should affect the thermomechanical constants of the composite. The theoretical predictions were compared with experimental results as well as with theoretical values from expressions obtained from other workers and they were found to be in satisfactory agreement.  相似文献   

3.
The polyamide-6 pellets were mixed with nano-SiO2 particles surface-capped by 3-aminopropyltriethoxysilane (APS) via a melt blending route. PA-6 composites doped with surface-capped nano-SiO2 (designated as PAMNS, where AMNS refers to APS surface-capped nano-SiO2). AMNS and the silica samples (designated as EAMNS) extracted by acid etching from various PAMNS samples containing different concentration of amino functional groups on surface-capped nano-silica surfaces were characterized by means of Fourier transformation infrared spectrometry (FTIR), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). This aims at revealing the interfacial interaction between AMNS and PA-6 matrix and its effect on the mechanical properties of the filled PA-6 composites. The chemical features and microstructures of the PAMNS composites were analyzed by means of FTIR and transmission electron microscopy (TEM), respectively, while their mechanical properties were evaluated using standardized test rigs. Results demonstrate that the surface-modified nano-SiO2 particles were uniformly dispersed in PA-6 matrix. The residue silica extracted from various PAMNS samples showed characteristic FTIR absorbance peak of PA-6 and had larger weight losses than AMNS, implying that the polymeric matrix was chemically bonded with the nanofiller particles. The interfacial interactions are closely related to the concentration of functional groups in AMNS, and there might exist a critical concentration at which the strongest interfacial interactions could be reached. Beyond the critical concentration of the functional groups in AMNS, the mechanical properties of the filled PA-6 composites tended to decrease to some extent.  相似文献   

4.
The work is concerned with modification of C/C composites by intercalation of copper chloride. The samples of composites were made from graphite fibres and carbon matrix derived from mesophase pitch and from phenol-formaldehyde resin. The samples were prepared by impregnating graphite fibres with a liquid pitch or polymer solution to obtain unidirectional laminates. The laminates were used to prepare the composites which were then subjected to carbonization and graphitization up to 2150 °C. The work discusses the problem relevant to the effect of intercalation on mechanical and electrical properties of composites. The studies indicated that both mesophase pitch-based composites and phenolic-derived carbon-carbon composites changed their electrical and mechanical properties upon intercalation with copper chloride. Electrical conductivity of both types of composites decreased as a result of the damages formed during intercalation.  相似文献   

5.
One of the most important characteristics and basic phenomena during diamond growth from liquid metal catalyst solutions saturated with carbon at high temperature–high pressure (HPHT) is that there exists a thin metallic film covering on the growing diamond, through which carbon-atom clusters are delivered to the surface of the growing diamond by diffusion. A study of microstructures of such a metallic film and a relation between the thin metallic film and the inclusions trapped in HPHT as-grown diamond single crystals may be helpful to obtain high-purity diamond single crystals. It was found that both the metallic film and the HPHT as-grown diamond single crystals contain some nanostructured regions. Examination by transmission electron microscopy suggests that the microstructure of the thin metallic film is in accordance with nanosized particles contained in HPHT as-grown diamond single crystals. The nanosized particles with several to several tens of nanometers in dimension distribute homogeneously in the metallic film and in the diamond matrix. Generally, the size of the particles in the thin metallic film is relatively larger than that within the diamond matrix. Selected area electron diffraction patterns suggest that the nanosized particles in the metallic film and nanometer inclusions within the diamond are mainly composed of f.c.c. (FeNi)23C6, hexagonal graphite and cubic γ-(FeNi). The formation of the nanosized inclusions within the diamond single crystals is thought not only to relate to the growth process and rapid quenching from high temperature after diamond synthesis, but also to be associated with large amounts of defects in the diamond, because the free energy in these defect areas is very high. The critical size of carbide, γ-(FeNi)and graphite particles within the diamond matrix should decrease and not increase according to thermodynamic theory during quenching from HPHT to room temperature and ambient pressure. Received: 13 September 2001 / Accepted: 12 June 2002 / Published online: 17 December 2002 RID="*" ID="*"Corresponding author. Fax: +86-0531/295-5081; E-mail: yinlw@sdu.edu.cn  相似文献   

6.
The enhancement of mechanical properties of cement composites by a carbon nanomaterial is an important topic. However, the co-effect of two (or more) carbon nanomaterials on the mechanical properties of cement has not been explored. In this paper, it was found that the mixture of graphene oxide (GO) sheets and single-walled carbon nanotubes (SWCNTs) exhibited an excellent co-effect, leading to 72.7% increase in bending strength of cement, which is much larger than the strength enhancements of 51.2% by GO and 26.3% by SWCNTs. Furthermore, it was demonstrated that the bending strength of cement composite materials with GO and SWCNTs is proportional to the sizes of crystal SiO2 particles.  相似文献   

7.
Samples of composites, in which ethylene-tetrafluoroethylene copolymer is used as a matrix and quasicrystalline Al?Cu?Fe powder as a filler with 0, 1, 2, 4 and 8 vol % concentrations, are prepared. Electron microscopy studies of the sample structure are carried out. The influence of the filler on the crystallinity and temperatures of sample melting and destruction is investigated. The mechanical and tribological properties of the samples are tested. It is found that an increase in the filler content changes neither the mechanical nor thermodynamic characteristics of the material but significantly improves the tribological characteristics. The friction coefficient decreases twice at 1 vol % of the filler and the wear resistance increases by 40 times at 8 vol %. Experimental data indicate the probability of good adhesion of the filler particles to the fluoropolymer matrix. The composites under investigation may be of interest as promising materials for polymer friction bearings.  相似文献   

8.
Nanometre-sized (hereafter nano-) Pb particles embedded in an Al matrix are prepared by ball milling. It is found that the size of nano-Pb particles was decreased with increasing milling time. The melting behaviour of nano-Pb particles embedded in the Al matrix is studied by means of dynamic mechanical analysis, and a single internal friction peak in the vicinity of Pb melting temperature is observed. The onset temperature of the peak moves to lower temperature with the decrease of particles size and the internal friction peak height is increased, which indicates a size-dependent melting behaviour of nano-Pb particles. It is suggested that the size-dependent melting behaviour is associated with surface melting.  相似文献   

9.
Carroll NL  Humphrey VF  Smith JD 《Ultrasonics》2002,40(1-8):525-530
Viscoelastic fibre-reinforced composite materials have a number of possible advantages for use in underwater acoustic applications. In order to exploit these materials it is important to be able to measure their complex stiffness matrix in order to determine their acoustic response. Ultrasonic transmission measurements on parallel-sided samples, employing broadband pulsed transducers at 2.25 MHz and an immersion method, have been used to determine the viscoelastic properties of a glass-reinforced composite with uniaxially aligned fibres. The composite measured was constructed from Cytecfiberite's CYCOM 919 E-glass. The theory of acoustic propagation in anisotropic materials shows that the direction of energy propagation is, in general, different from that given by Snell's Law. At 15 degrees incidence, Snell's Law implies a refracted angle of 40 +/- 2 degrees, whereas the energy direction is observed to be 70 +/- 2 degrees. Despite this, the experimental data indicates that the position of the receiving transducer has relatively little effect on the apparent phase velocity measured. The phase velocities measured at positions determined from the refracted angle and energy direction are 3647 and 3652 +/- 50 m s(-1), respectively. However, the amplitude of the received signal, and hence estimate of attenuation, is highly sensitive to the receiver position. This indicates that the acoustic Poynting vector must be considered in order to precisely determine the correct position of the receiving transducer for attenuation measurements. The beam displacement for a 17.6 mm sample at 15 degrees incidence is 9.5 and 40 mm by Snell's Law and Poynting's Theorem, respectively. Measured beam displacements have been compared with predictions derived from material stiffness coefficients. These considerations are important in recovering the complex stiffness matrix.  相似文献   

10.
The paper analyzes experimental data obtained on physical and mechanical properties of nanostructured particle-reinforced composites with elastomer matrices and nano- and microsized carbon-containing particles by scanning probe microscopy and nanoindentation with specialized 3D computer processing. The nano-effects observed in the elastomer matrices are described using the fractal approach. A fractal model of nanoparticle aggregation in a polymer matrix is proposed. Phase interactions in the nanostructured polymer materials are described and fractal relations that predict the reinforcing effect of this type of media are presented. It is shown that interphase regions in the nanostructured composites are the same reinforcing elements as a nanofiller for the medium. It is found that reinforcement of elastomer composites by nanosized particles is a true nano-effect.  相似文献   

11.
用碳化物粒子对低活化钢CLF-1进行弥散强化.结果表明机械合金化的方法可以制备高强度的碳化物弥散强化钢,经过60h球磨可完成合金化过程,同时添加的碳化物粒子很好地提高了低活化钢CLF-1的拉伸性能,得到了比熔炼低活化钢更高的强度和硬度,同时保持了较好的延伸率.  相似文献   

12.
Cermets are wear resistant materials used in cutting tool applications. The materials are composed of hard phase grains surrounded by a tough binder phase. The mechanical properties are influenced by both phases and grain boundaries. In this work, the detailed microstructure of the Ni binder phase in a TiC–Mo2C–Ni cermet has been studied using a combination of transmission electron microscopy techniques. A complex contrast was observed in the Ni binder when imaged in the transmission electron microscope. It was found to arise from a combination of dislocations and nanometer sized particles that were present in the Ni matrix. From electron diffraction the particles were identified as intermetallic Ni3Ti (P63/mmc). This result was consistent with energy-dispersive microanalysis and thermodynamics. The orientation relationship between the hexagonal Ni3Ti particles and the cubic Ni matrix was given by (0001)Ni3Ti//(111)Ni and Ni3Ti// Ni.  相似文献   

13.
A mixed method for measuring low-frequency acoustic properties of macromolecular materials is presented. The dynamic mechanical parameters of materials are first measured by using Dynamic Mechanical Thermal Apparatus(DMTA) at low frequencies, usually less than 100 Hz; then based on the Principles of Time-Temperature Superposition (TTS), these parameters are extended to the frequency range that acousticians are concerned about, usually from hundreds to thousands of hertz; finally the extended dynamic mechanical parameters are transformed into acoustic parameters with the help of acoustic measurement and inverse analysis. To test the feasibility and accuracy, we measure a kind of rubber sample in DMTA and acquire the basic acoustic parameters of the sample by using this method. While applying the basic parameters to calculating characteristics of the sample in acoustic pipe, a reasonable agreement of sound absorption coefficients is obtained between the calculations and measurements in the acoustic pipe.  相似文献   

14.
The diffusion of plasma impurities in tokamak-edge-plasma turbulence is investigated numerically. The time-dependent potential governing particle motion was measured by 2D array of 8×8 Langmuir probes in edge region of CASTOR tokamak. The diffusion of particles is found to be classical in the radial direction, but it can be of an anomalous Lévy-walk type in the poloidal direction. The diffusion is found to be dependent on the ratio of particles’ mass and charge. When this ratio grows, the diffusion coefficient in radial direction grows as well, whereas poloidal diffusion coefficient drops down. Moreover, movement of particles in the time-frozen snapshot of this potential is investigated showing that also the time-independent potential is much more favorable for the particle diffusion in poloidal direction than in radial one. In the case of single ionized carbon ions the poloidal diffusion in time-independent potential transits to the Lévy-walk type for temperatures greater than 25 eV, for radial diffusion Lévy-walk was not observed even for 500 eV.  相似文献   

15.
Above a small length scale, the distribution of local elastic energies in a material under an external load is typically Gaussian, and the dependence of the average elastic energy on strain defines the stiffness of the material. Some particular materials, such as granular packings, suspensions at the jamming transition, crumpled sheets and dense cellular aggregates, display under compression an exponential distribution of elastic energies, but also in this case the elastic properties are well defined. We demonstrate here that networks of fibres, which form uncorrelated non-fractal structures, have under external load a scale invariant distribution of elastic energy (epsilon) at the fibre-fibre contacts proportional to 1/epsilon. This distribution is much broader than any other distribution observed before for elastic energies in a material. We show that for small compressions it holds over 10 orders of magnitude in epsilon. In such a material a few 'hot spots' carry most of the elastic load. Consequently, these materials are highly susceptible to local irreversible deformations, and are thereby extremely efficient for damping vibrations.  相似文献   

16.
Polymeric matrices with stabilized metallic nanoparticles constitute an important class of nanostructured materials, because polymer technology allows fabrication of components with various electronic, magnetic and mechanical properties. The porous cellulose matrix has been shown to be a useful support material for platinum, palladium, silver, copper and nickel nanoparticles. In the present study, nanosized cobalt particles with enhanced magnetic properties were made by chemical reduction within a microcrystalline cellulose (MCC) matrix. Two different chemical reducers, NaBH4 and NaH2PO2, were used, and the so-formed nanoparticles were characterized with X-ray absorption spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. These experimental techniques were used to gain insight into the effect of different synthesis routes on structural properties of the nanoparticles. Magnetic properties of the nanoparticles were studied using a vibrating sample magnetometer. Particles made via the NaBH4 reduction were amorphous Co-B or Co oxide composites with diminished ferromagnetic behaviour and particles made via the NaH2PO2 reduction were well-ordered ferromagnetic hcp cobalt nanocrystals.  相似文献   

17.
In this study, we modified the surface of hydroxyapatite (HA) particle by ring-opening polymerization of lactide (LA). The modified HA particles were characterized by IR and TGA. It was shown that LA could be graft-polymerized onto the surface of HA. A series of composites based on modified HA/PLA were further prepared and characterized. It indicated that the modified HA particles were well dispersed in PLA matrix than unmodified HA particles and the adhesion between HA particle and PLA matrix was improved. The modified HA/PLA composites showed good mechanical properties than that of unmodified HA/PLA.  相似文献   

18.
Hung  C.-Y.  Marshall  A.F.  Kim  D.-K.  Nix  W.D.  Harris  J.S.  Kiehl  R.A. 《Journal of nanoparticle research》1999,1(3):329-347
The use of strain to direct the assembly of nanoparticle arrays in a semiconductor is investigated experimentally and theoretically. The process uses crystal strain produced by a surface structure and variations in layer composition to guide the formation of arsenic precipitates in a GaAs-based structure grown at low temperature by molecular beam epitaxy. Remarkable patterning effects, including the formation of single and double one-dimensional arrays with completely clear fields are achieved for particles in the 10-nm size regime at a depth of about 50-nm from the semiconductor surface. Experimental results on the time dependence of the strain patterning indicates that strain controls the late stage of the coarsening process, rather than the precipitate nucleation. Comparison of the observed particle distributions with theoretical calculations of the stress and strain distributions reveals that the precipitates form in regions of maximum strain energy, rather than near extremum points of hydrostatic stress or dilatation strain. It is therefore concluded that the patterning results from modulus differences between the particle and matrix materials rather than from other strain related effects. The results presented here should be useful for extending strain directed assembly to other materials systems and to other configurations of particles.  相似文献   

19.
A model to describe the heating of metal inclusions in inert media by a laser radiation pulse with allowance for the heat-transfer and melting processes in the matrix and inclusion materials is proposed. The time regularities of the heating of the matrix and inclusions were examined, and the dependences of the maximum temperature on the particle surface on the laser pulse energy density and on the particle radius were obtained. Approximate formulae for the maximum heating temperature and for the radius of most heated particles are proposed. We show that melting processes result in a reduction of the maximum heating temperature and in an insignificant variation of the radius of most heated particles.  相似文献   

20.
Extreme damping in composite materials with a negative stiffness phase   总被引:3,自引:0,他引:3  
Composites with negative stiffness inclusions in a viscoelastic matrix are shown to have higher stiffness and mechanical damping tandelta than that of either constituent and exceeding conventional bounds. The causal mechanism is a greater deformation in and near the inclusions than the composite as a whole. Though a block of negative stiffness is unstable, negative stiffness inclusions in a composite can be stabilized by the surrounding matrix. Such inclusions may be made from single domains of ferroelastic material below its phase transition temperature or from prebuckled lumped elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号