首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The kinetic and mechanistic study of Ag(I)‐catalyzed chlorination of linezolid (LNZ) by free available chlorine (FAC) was investigated at environmentally relevant pH 4.0–9.0. Apparent second‐order rate constants decreased with an increase in pH of the reaction mixture. The apparent second‐order rate constant for uncatalyzed reaction, e.g., kapp = 8.15 dm3 mol−1 s−1 at pH 4.0 and kapp. = 0.076 dm3 mol−1 s−1 at pH 9.0 and 25 ± 0.2°C and for Ag(I) catalyzed reaction total apparent second‐order rate constant, e.g., kapp = 51.50 dm3 mol−1 s−1 at pH 4.0 and kapp. = 1.03 dm3 mol−1 s−1 at pH 9.0 and 25 ± 0.2°C. The Ag(I) catalyst accelerates the reaction of LNZ with FAC by 10‐fold. A mechanism involving electrophilic halogenation has been proposed based on the kinetic data and LC/ESI/MS spectra. The influence of temperature on the rate of reaction was studied; the rate constants were found to increase with an increase in temperature. The thermodynamic activation parameters Ea, ΔH#, ΔS#, and ΔG# were evaluated for the reaction and discussed. The influence of catalyst, initially added product, dielectric constant, and ionic strength on the rate of reaction was also investigated. The monochlorinated substituted product along with degraded one was formed by the reaction of LNZ with FAC.  相似文献   

2.
Rate constants for the gas‐phase reaction of hexamethylbenzene (HMB) with OH radicals and H atoms and of 1,3,5‐trimethylbenzene (TMB) with H atoms have been obtained in a flow system at 295 ± 2 K and a pressure of 25 mbar He using MS measurements. Obtained rate constants from a relative rate technique are k(OH+HMB) = (1.13 ± 0.11) 10−10, k(H+HMB) = (5.9 ± 3.4) 10−13 and k(H+TMB) = (4.6 ± 2.7) 10−13 cm3 molecule−1 s−1, respectively. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 124–129, 2001  相似文献   

3.
《Polyhedron》1987,6(2):269-273
The kinetics of the photoaquation of the octacyanomolybdate(IV) ion in aqueous solution were studied by potentiometric and spectrophotometric methods. In an alkaline medium a simple scheme analogous to the photoaquation of the hexacyanoferrate(II) ion describes the process. The values of the constants of the kinetic equation are: (Φ = 1.0, k8 = (6.55 ± 0.8) x 10−9 s−1, and k−8 = (7.88 ± 0.5) x 10−2 mol−1 dm3 s−1 (pH = 10.5). The reversibility of the photoaquation is also explained by the scheme. A simultaneous measurement of free cyanide ion concentration and the absorbance at 512nm shows that the red coloured transition product is a heptacyano complex.  相似文献   

4.
The kinetics of the complexation of Al3+ with aminoacids, IDA and NTA are investigated by the stopped flow method with conductivity detection in the range of pH < 4. Reaction amplitudes and pseudo-first-order rate constants are evaluated yielding equilibrium and rate constants. It is shown that Al3+ forms only complexes with the negatively charged species and that the kinetics of all investigated ligands can be explained with the same reaction scheme. For aspartic acid, IDA and NTA a stepwise complexation is observed where monodentate complexes are formed by a fast reaction (2s −1 < k < 20s1) which is base catalyzed. The rate determining step is the solvent exchange at Al3+ according to the Eigen-Wilkins mechanism. However, the ligand influences this exchange rate and a linear free energy relation is found between log k and pKa, which also describes the kinetics of other ligands. This fast reaction is followed by the much slower formation of chelates (for NTA:k = 0.27 s −1) which is controlled by the deprotonation of the nitrogen atom. The overall association constant of the Al-NTA complex is determined as log (Kass/dm3mol−1) = 13.0 ± 0.3. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
Cavity ring‐down UV absorption spectroscopy was used to study the kinetics of the recombination reaction of FCO radicals and the reactions with O2 and NO in 4.0–15.5 Torr total pressure of N2 diluent at 295 K. k(FCO + FCO) is (1.8 ± 0.3) × 10−11 cm3 molecule−1 s−1. The pressure dependence of the reactions with O2 and NO in air at 295 K is described using a broadening factor of Fc = 0.6 and the following low (k0) and high (k) pressure limit rate constants: k0(FCO + O2) = (8.6 ± 0.4) × 10−31 cm6 molecule−1 s−1, k(FCO + O2) = (1.2 ± 0.2) × 10−12 cm3 molecule−1 s−1, k0(FCO + NO) = (2.4 ± 0.2) × 10−30 cm6 molecule−1 s−1, and k (FCO + NO) = (1.0 ± 0.2) × 10−12 cm3 molecule−1 s−1. The uncertainties are two standard deviations. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 130–135, 2001  相似文献   

6.
The rate constants for the gas-phase reactions of di-tert-butyl ether (DTBE) with chlorine atoms, hydroxyl radicals, and nitrate radicals have been determined in relative rate experiments using FTIR spectroscopy. Values of k(DTBE+CI) = (1.4 ± 0.2) × 10−10,k(DTBE+OH) = (3.7 ± 0.7) × 10−12, and k(DTBE+N03) = (2.8 ± 0.9) × 10−16 cm3 molecule−1 s−1 were obtained. Tert-butyl acetate was identified as the major product of both Cl atom and OH radical initiated oxidation of DTBE in air in the presence of NOx. The molar tert-butyl acetate yield was 0.85 ± 0.11 in the Cl atom experiments and 0.84 ± 0.11 in OH radical experiments. As part of this work the rate constant for reaction of Cl atoms with tert-butyl acetate at 295 K was determined to be (1.6 ± 0.3) × 10−11 cm3 molecule−1 s−1. The stated errors are two standard deviations (2σ). © 1996 John Wiley & Sons, Inc.  相似文献   

7.
An extension to the rotating-sector method, which is usually applied to determine propagation and termination rate constants, is presented. The analytical treatment developed accounts for the simultaneous presence of a thermal initiation and of a first-order termination process. The applicability of the rotating-sector method is thus extended to situations where the rate in dark is higher than 5% of the rate in the presence of light, and more accurate estimates of the rate constants are obtained than before for any values of the “dark” rate. A previously published experiment on the application of the rotating-sector method to the autoxidation of styrene was reanalyzed. The estimates obtained for the propagation and the termination rate constants were 11% and 19% higher than the previous estimates, respectively. Finally, the improved rotating-sector method was also applied to the experimental determination of propagation (kp) and termination rate constants (2×kt) for both 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine (PLPC) and 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC) liposomes. The following results were obtained at 37°C: for PLPC kp =16.6 M−1s−1, and 2×kt=1.27×105 M−1s−1; for DLPC kp(intermolecular)=(13.3–13.9) M−1s−1, kp(intramolecular)=(4.7–5.4) s−1, and 2×kt=(0.99–1.05)×105 M−1s−1. The separation of the intermolecular and intramolecular propagation rate constants for DLPC was made possible both by a special adaptation of the rotating-sector equations to substrates with two oxidizable moieties, and by the experimental determination of the ratio between partially oxidized DLPC molecules (only one acyl is oxidized) and fully oxidized DLPC molecules (both acyls are oxidized). © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 753–767, 1998  相似文献   

8.
The reaction of Cl atoms with a series of C2–C5 unsaturated hydrocarbons has been investigated at atmospheric pressure of 760 Torr over the temperature range 283–323 K in air and N2 diluents. The decay of the hydrocarbons was followed using a gas chromatograph with a flame ionization detector (GC‐FID), and the kinetic constants were determined using a relative rate technique with n‐hexane as a reference compound. The Cl atoms were generated by UV photolysis (λ ≥ 300 nm) of Cl2 molecules. The following absolute rate constants (in units of 10−11 cm3 molecule−1 s−1, with errors representing ±2σ) for the reaction at 295 ± 2 K have been derived from the relative rate constants combined to the value 34.5 × 10−11 cm3 molecule−1 s−1 for the Cl + n‐hexane reaction: ethene (9.3 ± 0.6), propyne (22.1 ± 0.3), propene (27.6 ± 0.6), 1‐butene (35.2 ± 0.7), and 1‐pentene (48.3 ± 0.8). The temperature dependence of the reactions can be expressed as simple Arrhenius expressions (in units of 10−11 cm3 molecule−1 s−1): kethene = (0.39 ± 0.22) × 10−11 exp{(226 ± 42)/T}, kpropyne = (4.1 ± 2.5) × 10−11 exp{(118 ± 45)/T}, kpropene = (1.6 ± 1.8) × 10−11 exp{(203 ± 79)/T}, k1‐butene = (1.1 ± 1.3) × 10−11 exp{(245 ± 90)/T}, and k1‐pentene = (4.0 ± 2.2) × 10−11 exp{(423 ± 68)/T}. The applicability of our results to tropospheric chemistry is discussed. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 478–484, 2000  相似文献   

9.
The overall rate constants for H-abstraction (kH) from tetrahydrofuran and D-abstraction (kD) from fully deuterated tetrahydrofuran by chlorine atoms in the temperature range of 298-547 K were determined. In both cases, very weak negative temperature dependences of the overall rate constants were observed, described by the expressions: kH = (1.55 ± 0.13) × 10−10 exp(52 ± 28/T) cm3 molecule−1 s−1 and kD = (1.27 ± 0.25) × 10−10exp(55 ± 62/T) cm3 molecule−1 s−1. The experimental results show that the value of the kinetic isotope effect (kH/kD), amounting to 1.21 ± 0.10, is temperature independent at 298-547 K.  相似文献   

10.
Using relative rate techniques the reactions of chlorine and fluorine atoms with HC(O)F have been determined to proceed with rate constants of k1 = (1.9 ± 0.2) × 10−15 and k2 = (8.3 ± 1.7) × 10−13 cm3 molecule−1 s−1, respectively. Stated errors reflect statistical uncertainty; possible systematic uncertainties could add additional 10% and 20% ranges to the values of k1 and k2, respectively. Experiments were performed at 295 ± 2 K and 700 torr total pressure of air. The results are discussed with respect to the design and interpretation of laboratory studies of the atmospheric chemistry of CFC replacements. © 1997 John Wiley & Sons, Inc.  相似文献   

11.
A laser photolysis–long path laser absorption (LP‐LPLA) experiment has been used to determine the rate constants for H‐atom abstraction reactions of the dichloride radical anion (Cl2) in aqueous solution. From direct measurements of the decay of Cl2 in the presence of different reactants at pH = 4 and I = 0.1 M the following rate constants at T = 298 K were derived: methanol, (5.1 ± 0.3)·104 M−1 s−1; ethanol, (1.2 ± 0.2)·105 M−1 s−1; 1‐propanol, (1.01 ± 0.07)·105 M−1 s−1; 2‐propanol, (1.9 ± 0.3)·105 M−1 s−1; tert.‐butanol, (2.6 ± 0.5)·104 M−1 s−1; formaldehyde, (3.6 ± 0.5)·104 M−1 s−1; diethylether, (4.0 ± 0.2)·105 M−1 s−1; methyl‐tert.‐butylether, (7 ± 1)·104 M−1 s−1; tetrahydrofuran, (4.8 ± 0.6)·105 M−1 s−1; acetone, (1.41 ± 0.09)·103 M−1 s−1. For the reactions of Cl2 with formic acid and acetic acid rate constants of (8.0 ± 1.4)·104 M−1 s−1 (pH = 0, I = 1.1 M and T = 298 K) and (1.5 ± 0.8) · 103 M−1 s−1 (pH = 0.42, I = 0.48 M and T = 298 K), respectively, were derived. A correlation between the rate constants at T = 298 K for all oxygenated hydrocarbons and the bond dissociation energy (BDE) of the weakest C‐H‐bond of log k2nd = (32.9 ± 8.9) − (0.073 ± 0.022)·BDE/kJ mol−1 is derived. From temperature‐dependent measurements the following Arrhenius expressions were derived: k (Cl2 + HCOOH) = (2.00 ± 0.05)·1010·exp(−(4500 ± 200) K/T) M−1 s−1, Ea = (37 ± 2) kJ mol−1 k (Cl2 + CH3COOH) = (2.7 ± 0.5)·1010·exp(−(4900 ± 1300) K/T) M−1 s−1, Ea = (41 ± 11) kJ mol−1 k (Cl2 + CH3OH) = (5.1 ± 0.9)·1012·exp(−(5500 ± 1500) K/T) M−1 s−1, Ea = (46 ± 13) kJ mol−1 k (Cl2 + CH2(OH)2) = (7.9 ± 0.7)·1010·exp(−(4400 ± 700) K/T) M−1 s−1, Ea = (36 ± 5) kJ mol−1 Finally, in measurements at different ionic strengths (I) a decrease of the rate constant with increasing I has been observed in the reactions of Cl2 with methanol and hydrated formaldehyde. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 169–181, 1999  相似文献   

12.
Absolute rate constants for the reactions of OH radicals with butyl ethyl ether (k1), methyl tert-butyl ether (k2), ethyl tert-butyl ether (k3) tert-amyl methyl ether (k4) and tert-butyl alcohol (k5) have been measured over the temperature range 230–372 K using a pulsed laser photolysis-laser induced fluorescence (PLP-LIF) technique. The temperature dependence of k1k5 when expressed in Arrhenius form gave: k1 = (6.59 ± 0.66) × 10 −12 exp|(362 ± 60)/T|, k2 = (5.03 ± 0.27) × 10−12 exp|&minus(133 ± 30)/T|, k3 = (4.40 ± 0.24) × 10−12 exp|(210 ± 37)/T|,k4 = (4.7 ± 0.7) × 10−12 exp|(82 ± 85)/T|, and k5 = (2.66 ± 0.48) × 10−12 exp| −(270 ± 130)/T|. However, the Arrhenius plots for k1k5, were slightly curved and are best fitted by the three parameter fits which are given in the article. The room temperature values of k1, k2, k3, k4, and k5 are (2.08 ± 0.23) × 10−11, (3.13 ± 0.36) × 10−12, (8.80 ± 0.50) × 10−12, (6.28 ± 0.45) × 10−12, and (1.08 ± 0.10) × 10−12, respectively, in cm3 molecule−1 s−1. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
The kinetics and mechanism for the thermal decomposition of diketene have been studied in the temperature range 510–603 K using highly diluted mixtures with Ar as a diluent. The concentrations of diketene, ketene, and CO2 were measured by FTIR spectrometry using calibrated standard mixtures. Two reaction channels were identified. The rate constants for the formation of ketene (k1) and CO2 (k2) have been determined and compared with the values predicted by the Rice–Ramsperger–Kassel–Marcus (RRKM) theory for the branching reaction. The first-order rate constants, k1 (s−1) = 1015.74 ± 0.72 exp(−49.29 (kcal mol−1) (±1.84)/RT) and k2 (s−1) = 1014.65 ± 0.87 exp(−49.01 (kcal mol−1) (±2.22)/RT); the bulk of experimental data agree well with predicted results. The heats of formation of ketene, diketene, cyclobuta-1,3-dione, and cyclobuta-1,2-dione at 298 K computed from the G2M scheme are −11.1, −45.3, −43.6, and −40.3 kcal mol−1, respectively. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 580–590, 2007  相似文献   

14.
Absolute (flash photolysis) and relative (FTIR-smog chamber and GC) rate techniques were used to study the gas-phase reactions of Cl atoms with C2H6 (k1), C3H8 (k3), and n-C4H10 (k2). At 297 ± 1 K the results from the two relative rate techniques can be combined to give k2/k1 = (3.76 ± 0.20) and k3/k1 = (2.42 ± 0.10). Experiments performed at 298–540 K give k2/k1 = (2.0 ± 0.1)exp((183 ± 20)/T). At 296 K the reaction of Cl atoms with C3H8 produces yields of 43 ± 3% 1-propyl and 57 ± 3% 2-propyl radicals, while the reaction of Cl atoms with n-C4H10 produces 29 ± 2% 1-butyl and 71 ± 2% 2-butyl radicals. At 298 K and 10–700 torr of N2 diluent, 1- and 2-butyl radicals were found to react with Cl2 with rate coefficients which are 3.1 ± 0.2 and 2.8 ± 0.1 times greater than the corresponding reactions with O2. A flash-photolysis technique was used to measure k1 = (5.75 ± 0.45) × 10−11 and k2 = (2.15 ± 0.15) × 10−10 cm3 molecule−1 s−1 at 298 K, giving a rate coefficient ratio k2/k1 = 3.74 ± 0.40, in excellent agreement with the relative rate studies. The present results are used to put other, relative rate measurements of the reactions of chlorine atoms with alkanes on an absolute basis. It is found that the rate of hydrogen abstraction from a methyl group is not influenced by neighboring groups. The results are used to refine empirical approaches to predicting the reactivity of Cl atoms towards hydrocarbons. Finally, relative rate methods were used to measure rate coefficients at 298 K for the reaction of Cl atoms with 1- and 2-chloropropane and 1- and 2-chlorobutane of (4.8 ± 0.3) × 10−11, (2.0 ± 0.1) × 10−10, (1.1 ± 0.2) × 10−10, and (7.0 ± 0.8) × 10−11 cm3 molecule−1 s−1, respectively. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 43–55, 1997.  相似文献   

15.
Rate coefficients have been measured for the reactions of Cl atoms with methanol (k1) and acetaldehyde (k2) using both absolute (laser photolysis with resonance fluorescence) and relative rate methods at 295 ± 2 K. The measured rate coefficients were (units of 10−11 cm3 molecule−1 s−1): absolute method, k1 = (5.1 ± 0.4), k2 = (7.3 ± 0.7); relative method k1 = (5.6 ± 0.6), k2 = (8.4 ± 1.0). Based on a critical evaluation of the literature data, the following rate coefficients are recommended: k1 = (5.4 ± 0.9) × 10−11 and k2 = (7.8 ± 1.3) × 10−11 cm3 molecule−1 s−1 (95% confidence limits). The results significantly improve the confidence in the database for reactions of Cl atoms with these oxygenated organics. Rate coefficients were also measured for the reactions of Cl2 with CH2OH, k5 = (2.9 ± 0.6) × 10−11 and CH3CO, k6 = (4.3 ± 1.5) × 10−11 cm3 molecule−1 s−1, by observing the regeneration of Cl atoms in the absence of O2. Based on these results and those from a previous relative rate study, the rate coefficient for CH3CO + O2 at the high pressure limit is estimated to be (5.7 ± 1.9) × 10−12 cm3 molecule−1 s−1. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 776–784, 1999  相似文献   

16.
Rate constants have been determined for the reactions of Cl atoms with the halogenated ethers CF3CH2OCHF2, CF3CHClOCHF2, and CF3CH2OCClF2 using a relative‐rate technique. Chlorine atoms were generated by continuous photolysis of Cl2 in a mixture containing the ether and CD4. Changes in the concentrations of these two species were measured via changes in their infrared absorption spectra observed with a Fourier transform infrared (FTIR) spectrometer. Relative‐rate constants were converted to absolute values using the previously measured rate constants for the reaction, Cl + CD4 → DCl + CD3. Experiments were carried out at 295, 323, and 363 K, yielding the following Arrhenius expressions for the rate constants within this range of temperature:Cl + CF3CH2OCHF2: k = (5.15 ± 0.7) × 10−12 exp(−1830 ± 410 K/T) cm3 molecule−1 s−1 Cl + CF3CHClOCHF2: k = (1.6 ± 0.2) × 10−11 exp(−2450 ± 250 K/T) cm3 molecule−1 s−1 Cl + CF3CH2OCClF2: k = (9.6 ± 0.4) × 10−12 exp(−2390 ± 190 K/T) cm3 molecule−1 s−1 The results are compared with those obtained previously for the reactions of Cl atoms with other halogenated methyl ethyl ethers. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 165–172, 2001  相似文献   

17.
Using a relative rate method, rate constants have been measured for the gas-phase reactions of the OH radical with 1-hexanol, 1-methoxy-2-propanol, 2-butoxyethanol, 1,2-ethanediol, and 1,2-propanediol at 296±2 K, of (in units of 10−12 cm3 molecule−1 s−1): 15.8±3.5; 20.9±3.1; 29.4±4.3; 14.7±2.6; and 21.5±4.0, respectively, where the error limits include the estimated overall uncertainties in the rate constants for the reference compounds. These OH radical reaction rate constants are higher than certain of the literature values, by up to a factor of 2. Rate constants were also measured for the reactions of 1-methoxy-2-propanol and 2-butoxyethanol with NO3 radicals and O3, with respective NO3 radical and O3 reaction rate constants (in cm3 molecule−1 s−1 units) of: 1-methoxy-2-propanol, (1.7±0.7)×10−15, and <1.1×10−19; and 2-butoxyethanol, (3.0±1.2)×10−15, and <1.1×10−19. The dominant tropospheric loss process for the alcohols, glycols, and glycol ethers studied here is calculated to be by reaction with the OH radical, with lifetimes of 0.4–0.8 day for a 24 h average OH radical concentration of 1.0×106 molecule cm−3. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 533–540, 1998  相似文献   

18.
The kinetics of the reactions of ground state oxygen atoms with 1-pentene, 1-hexene, cis-2-pentene, and trans-2-pentene was investigated in the temperature range 200 to 370 K. In this range the temperature dependences of the rate constants can be represented by k = A′ Tn exp(− E′a/RT) with A′ = (1.0 ± 0.6) · 10−14 cm3 s−1, n = 1.13 ± 0.02, E′a = 0.54 ± 0.05 kJ mol−1 for 1-pentene: A′ = (1.3 ± 1.2) · 10−14 cm3 s−1, n = 1.04 ± 0.08, E′a = 0.2 ± 0.4 kJ mol−1 for 1-hexene; A′ = (0.6 ± 0.6) · 10−14 cm3 s−1, n = 1.12 ± 0.05, E′a = − 3.8 ± 0.8 kJ mol−1 for cis-2-pentene; and A′ = (0.6 ± 0.8) · 10−14 cm3 s−1, n = 1.14 ± 0.06, E′a = − 4.3 ± 0.5 kJ mol−1 for trans-2-pentene. The atoms were generated by the H2-laser photolysis of NO and detected by time resolved chemiluminescence in the presence of NO. The concentrations of the O(3P) atoms were kept so low that secondary reactions with products are unimportant. © 1997 John Wiley & Sons, Inc.  相似文献   

19.
Ligand substitution kinetics for the reaction [PtIVMe3(X)(NN)]+NaY=[PtIVMe3(Y)(NN)]+NaX, where NN=bipy or phen, X=MeO, CH3COO, or HCOO, and Y=SCN or N3, has been studied in methanol at various temperatures. The kinetic parameters for the reaction are as follows. The reaction of [PtMe3(OMe)(phen)] with NaSCN: k1=36.1±10.0 s−1; ΔH1=65.9±14.2 kJ mol−1; ΔS1=6±47 J mol−1 K−1; k−2=0.0355±0.0034 s−1; ΔH−2=63.8±1.1 kJ mol−1; ΔS−2=−58.8±3.6 J mol−1 K−1; and k−1/k2=148±19. The reaction of [PtMe3(OAc)(bipy)] with NaN3: k1=26.2±0.1 s−1; ΔH1=60.5±6.6 kJ mol−1; ΔS1=−14±22 J mol−1K−1; k−2=0.134±0.081 s−1; ΔH−2=74.1±24.3 kJ mol−1; ΔS−2=−10±82 J mol−1K−1; and k−1/k2=0.479±0.012. The reaction of [PtMe3(OAc)(bipy)] with NaSCN: k1=26.4±0.3 s−1; ΔH1=59.6±6.7 kJ mol−1; ΔS1=−17±23 J mol−1K−1; k−2=0.174±0.200 s−1; ΔH−2=62.7±10.3 kJ mol−1; ΔS−2=−48±35 J mol−1K−1; and k−1/k2=1.01±0.08. The reaction of [PtMe3(OOCH)(bipy)] with NaN3: k1=36.8±0.3 s−1; ΔH1=66.4±4.7 kJ mol−1; ΔS1=7±16 J mol−1K−1; k−2=0.164±0.076 s−1; ΔH−2=47.0±18.1 kJ mol−1; ΔS−2=−101±61 J mol−1 K−1; and k−1/k2=5.90±0.18. The reaction of [PtMe3(OOCH)(bipy)] with NaSCN: k1 =33.5±0.2 s−1; ΔH1=58.0±0.4 kJ mol−1; ΔS1=−20.5±1.6 J mol−1 K−1; k−2=0.222±0.083 s−1; ΔH−2=54.9±6.3 kJ mol−1; ΔS−2=−73.0±21.3 J mol−1 K−1; and k−1/k2=12.0±0.3. Conditional pseudo-first-order rate constant k0 increased linearly with the concentration of NaY, while it decreased drastically with the concentration of NaX. Some plausible mechanisms were examined, and the following mechanism was proposed. [Note to reader: Please see article pdf to view this scheme.] © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 523–532, 1998  相似文献   

20.
Long-path FTIR spectroscopy was used to study the kinetics and mechanism of the reaction of Cl atoms with CO in air. The relative rate constants at 298 K and 760 torr for the forward direction of the reaction of Cl with 13CO and the reaction of Cl13CO with O2 were k1 = (3.4 ± 0.8) × 10−14 cm3 molecule−1 s−1 and k2 = (4.3 ± 3.2) × 10−13 cm3 molecule−1 s−1, respectively (all uncertainty limits are 2σ). The rate constant for the net loss of 13CO due to reaction with Cl in 1 atm of air at 298 K was kCl+COobs = (3.0 ± 0.6) × 10−14 cm3 molecule−1 s−1. The only observed carbon-containing product of the Cl + 12CO reaction was 12CO2, with a yield of 109 ± 18%. Our results are in good agreement with extrapolations from previous studies. The reaction mechanism and the implications for laboratory studies and tropospheric chemistry are discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号