首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel approach to the development of a code for the solution of the time-dependent two-dimensional Navier–Stokes equations is described. The code involves coupling between the method of lines (MOL) for the solution of partial differential equations and a parabolic algorithm which removes the necessity of iterative solution on pressure and solution of a Poisson-type equation for the pressure. The code is applied to a test problem involving the solution of transient laminar flow in a short pipe for an incompressible Newtonian fluid. Comparisons show that the MOL solutions are in good agreement with the previously reported values. The proposed method described in this paper demonstrates the ease with which the Navier–Stokes equations can be solved in an accurate manner using sophisticated numerical algorithms for the solution of ordinary differential equations (ODEs).  相似文献   

2.
A computational fluid dynamics (CFD) code based on the method of lines (MOL) approach was developed for the solution of transient, two-dimensional Navier-Stokes equations for incompressible separated internal flows in complex rectangular geometries. The predictive accuracy of the code was tested by applying it to the prediction of flow fields in both laminar and turbulent channel flows with and without sudden expansion, and comparing its predictions with either measured data or numerical results available in the literature. The predicted flow fields were found to be in favorable agreement with those available in the literature for laminar channel flow with sudden expansion and turbulent channel flow with Re=6600. The code was then applied to the prediction of the highly turbulent flow field in the inlet flue of a heat recovery steam generator (HRSG). The predicted flow field was found to display the same trend with the experimental findings and numerical solutions reported previously for a turbulent diverging duct. As the code uses the MOL approach in conjunction with (i) an intelligent higher-order spatial discretization scheme, (ii) a parabolic algorithm for pressure, and (iii) an elliptic grid generator using a body-fitted coordinate system for complex geometries, it provides an efficient algorithm for future direct numerical simulation (DNS) applications in complex rectangular geometries.  相似文献   

3.
A discretization method is presented for the full, steady, compressible Navier–Stokes equations. The method makes use of quadrilateral finite volumes and consists of an upwind discretization of the convective part and a central discretization of the diffusive part. In the present paper the emphasis lies on the discretization of the convective part. The solution method applied solves the steady equations directly by means of a non-linear relaxation method accelerated by multigrid. The solution method requires the discretization to be continuously differentiable. For two upwind schemes which satisfy this requirement (Osher's and van Leer's scheme), results of a quantitative error analysis are presented. Osher's scheme appears to be increasingly more accurate than van Leer's scheme with increasing Reynolds number. A suitable higher-order accurate discretization of the convection terms is derived. On the basis of this higher-order scheme, to preserve monotonicity, a new limiter is constructed. Numerical results are presented for a subsonic flat plate flow and a supersonic flat plate flow with oblique shock wave–boundary layer interaction. The results obtained agree with the predictions made. Useful properties of the discretization method are that it allows an easy check of false diffusion and that it needs no tuning of parameters.  相似文献   

4.
A finite difference method is presented for solving the 3D Navier–Stokes equations in vorticity–velocity form. The method involves solving the vorticity transport equations in ‘curl‐form’ along with a set of Cauchy–Riemann type equations for the velocity. The equations are formulated in cylindrical co‐ordinates and discretized using a staggered grid arrangement. The discretized Cauchy–Riemann type equations are overdetermined and their solution is accomplished by employing a conjugate gradient method on the normal equations. The vorticity transport equations are solved in time using a semi‐implicit Crank–Nicolson/Adams–Bashforth scheme combined with a second‐order accurate spatial discretization scheme. Special emphasis is put on the treatment of the polar singularity. Numerical results of axisymmetric as well as non‐axisymmetric flows in a pipe and in a closed cylinder are presented. Comparison with measurements are carried out for the axisymmetric flow cases. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we present spectral/hp penalty least‐squares finite element formulation for the numerical solution of unsteady incompressible Navier–Stokes equations. Pressure is eliminated from Navier–Stokes equations using penalty method, and finite element model is developed in terms of velocity, vorticity and dilatation. High‐order element expansions are used to construct discrete form. Unlike other penalty finite element formulations, equal‐order Gauss integration is used for both viscous and penalty terms of the coefficient matrix. For time integration, space–time decoupled schemes are implemented. Second‐order accuracy of the time integration scheme is established using the method of manufactured solution. Numerical results are presented for impulsively started lid‐driven cavity flow at Reynolds number of 5000 and transient flow over a backward‐facing step. The effect of penalty parameter on the accuracy is investigated thoroughly in this paper and results are presented for a range of penalty parameter. Present formulation produces very accurate results for even very low penalty parameters (10–50). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Orbital flow past a cylinder is relevant to offshore structures. The numerical scheme presented here is based on a finite-difference solution of the Navier–Stokes equations. Alternating-directional-implicit (ADI) and successive-over-relaxation (SOR) techniques are used to solve the vorticity-transport and stream-function equations. Theoretical simulations to low Reynolds number flows (up to 1000) are discussed for cases involving uniform flow past stationary and rotating cylinders and orbital flow past a cylinder. The separation points for cylinders that are rotating or immersed in an orbital flow are deduced from velocity profiles through the boundary layer using a hybrid mesh scheme. During the initial development of orbital flow surface vorticity on the impulsively started cylinder dominates the flow. A vortex then detaches from behind the cylinder and establishes the flow pattern of the orbit. After some time a collection of vortices circles the orbit and distorts its shape a great deal. These vortices gradually spiral outward as others detach from the cylinder and join the orbital path.  相似文献   

7.
Hybrid grids consisting of prisms and tetrahedra are employed for the solution of the 3-D Navier–Stokes equations of incompressible flow. A pressure correction scheme is employed with a finite volume–finite element spatial discretization. The traditional staggered grid formulation has been substituted with a collocated mesh approach which uses fourth-order artificial dissipation. The hybrid grid is refined adaptively in local regions of appreciable flow variations. The scheme operations are performed on an edge-wise basis which unifies treatment of both types of grid elements. The adaptive method is employed for incompressible flows in both single and multiply-connected domains. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
We recently proposed a transformation‐free higher‐order compact (HOC) scheme for two‐dimensional (2‐D) steady convection–diffusion equations on nonuniform Cartesian grids (Int. J. Numer. Meth. Fluids 2004; 44 :33–53). As the scheme was equipped to handle only constant coefficients for the second‐order derivatives, it could not be extended directly to curvilinear coordinates, where they invariably occur as variables. In this paper, we extend the scheme to cylindrical polar coordinates for the 2‐D convection–diffusion equations and more specifically to the 2‐D incompressible viscous flows governed by the Navier–Stokes (N–S) equations. We first apply the formulation to a problem having analytical solution and demonstrate its fourth‐order spatial accuracy. We then apply it to the flow past an impulsively started circular cylinder problem and finally to the driven polar cavity problem. We present our numerical results and compare them with established numerical and analytical and experimental results whenever available. This new approach is seen to produce excellent comparison in all the cases. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The paper's focus is the calculation of unsteady incompressible 2D flows past airfoils. In the framework of the primitive variable Navier–Stokes equations, the initial and boundary conditions must be assigned so as to be compatible, to assure the correct prediction of the flow evolution. This requirement, typical of all incompressible flows, viscous or inviscid, is often violated when modelling the flow past immersed bodies impulsively started from rest. Its fulfillment can however be restored by means of a procedure enforcing compatibility, consisting in a pre‐processing of the initial velocity field, here described in detail. Numerical solutions for an impulsively started multiple airfoil have been obtained using a finite element incremental projection method. The spatial discretization chosen for the velocity and pressure are of different order to satisfy the inf–sup condition and obtain a smooth pressure field. Results are provided to illustrate the effect of employing or not the compatibility procedure, and are found in good agreement with those obtained with a non‐primitive variable solver. In addition, we introduce a post‐processing procedure to evaluate an alternative pressure field which is found to be more accurate than the one resulting from the projection method. This is achieved by considering an appropriate ‘unsplit’ version of the momentum equation, where the velocity solution of the projection method is substituted. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
This paper describes and compares two vorticity‐based integral approaches for the solution of the incompressible Navier–Stokes equations. Either a Lagrangian vortex particle method or an Eulerian finite volume scheme is implemented to solve the vorticity transport equation with a vorticity boundary condition. The Biot–Savart integral is used to compute the velocity field from a vorticity distribution over a fluid domain. The vorticity boundary condition is improved by the use of an iteration scheme connected with the well‐established panel method. In the early stages of development of flows around an impulsively started circular cylinder, and past an impulsively started foil with varying angles of attack, the computational results obtained by the Lagrangian vortex method are compared with those obtained by the Eulerian finite volume method. The comparison is performed separately for the pressure fields as well. The results obtained by the two methods are in good agreement, and give a better understanding of the vorticity‐based methods. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
A 3D Navier–Stokes solver has been developed to simulate laminar compressible flow over quadrilateral wings. The finite volume technique is employed for spatial discretization with a novel variant for the viscous fluxes. An explicit three-stage Runge–Kutta scheme is used for time integration, taking local time steps according to the linear stability condition derived for application to the Navier–Stokes equations. The code is applied to compute primary and secondary separation vortices at transonic speeds over a 65° swept delta wing with round leading edges and cropped tips. The results are compared with experimental data and Euler solutions, and Reynolds number effects are investigated.  相似文献   

12.
This paper is the first endeavour to present the local domain‐free discretization (DFD) method for the solution of compressible Navier–Stokes/Euler equations in conservative form. The discretization strategy of DFD is that for any complex geometry, there is no need to introduce coordinate transformation and the discrete form of governing equations at an interior point may involve some points outside the solution domain. The functional values at the exterior dependent points are updated at each time step to impose the wall boundary condition by the approximate form of solution near the boundary. Some points inside the solution domain are constructed for the approximate form of solution, and the flow variables at constructed points are evaluated by the linear interpolation on triangles. The numerical schemes used in DFD are the finite element Galerkin method for spatial discretization and the dual‐time scheme for temporal discretization. Some numerical results of compressible flows over fixed and moving bodies are presented to validate the local DFD method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
An approximate projection scheme based on the pressure correction method is proposed to solve the Navier–Stokes equations for incompressible flow. The algorithm is applied to the continuous equations; however, there are no problems concerning the choice of boundary conditions of the pressure step. The resulting velocity and pressure are consistent with the original system. For the spatial discretization a high-order spectral element method is chosen. The high-order accuracy allows the use of a diagonal mass matrix, resulting in a very efficient algorithm. The properties of the scheme are extensively tested by means of an analytical test example. The scheme is further validated by simulating the laminar flow over a backward-facing step.  相似文献   

14.
In this paper, we develop a coupled continuous Galerkin and discontinuous Galerkin finite element method based on a split scheme to solve the incompressible Navier–Stokes equations. In order to use the equal order interpolation functions for velocity and pressure, we decouple the original Navier–Stokes equations and obtain three distinct equations through the split method, which are nonlinear hyperbolic, elliptic, and Helmholtz equations, respectively. The hybrid method combines the merits of discontinuous Galerkin (DG) and finite element method (FEM). Therefore, DG is concerned to accomplish the spatial discretization of the nonlinear hyperbolic equation to avoid using the stabilization approaches that appeared in FEM. Moreover, FEM is utilized to deal with the Poisson and Helmholtz equations to reduce the computational cost compared with DG. As for the temporal discretization, a second‐order stiffly stable approach is employed. Several typical benchmarks, namely, the Poiseuille flow, the backward‐facing step flow, and the flow around the cylinder with a wide range of Reynolds numbers, are considered to demonstrate and validate the feasibility, accuracy, and efficiency of this coupled method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
A method which uses only the velocity components as primitive variables is described for solution of the incompressible unsteady Navier–Stokes equations. The method involves the multiplication of the primitive variable-based Navier–Stokes equations with the unit normal vector of finite volume elements and the integration of the resulting equations along the boundaries of four-node quadrilateral finite volume elements. Therefore, the pressure term is eliminated from the governing equations and any difficulty associated with pressure or vorticity boundary conditions is avoided. The equations are discretized on four-node quadrilateral finite volume elements by using the second-order-accurate central finite differences with the mid-point integral rule in space and the first-order-accurate backward finite differences in time. The resulting system of algebraic equations is solved in coupled form using a direct solver. As a test case, an impulsively accelerated lid-driven cavity flow in a square enclosure is solved in order to verify the accuracy of the present method.  相似文献   

16.
A numerical scheme for the simulation of blood flow and transport processes in large arteries is presented. Blood flow is described by the unsteady 3D incompressible Navier–Stokes equations for Newtonian fluids; solute transport is modelled by the advection–diffusion equation. The resistance of the arterial wall to transmural transport is described by a shear-dependent wall permeability model. The finite element formulation of the Navier–Stokes equations is based on an operator-splitting method and implicit time discretization. The streamline upwind/Petrov–Galerkin (SUPG) method is applied for stabilization of the advective terms in the transport equation and in the flow equations. A numerical simulation is carried out for pulsatile mass transport in a 3D arterial bend to demonstrate the influence of arterial flow patterns on wall permeability characteristics and transmural mass transfer. The main result is a substantial wall flux reduction at the inner side of the curved region. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
An accurate Fourier–Chebyshev spectral collocation method has been developed for simulating flow past prolate spheroids. The incompressible Navier–Stokes equations are transformed to the prolate spheroidal co‐ordinate system and discretized on an orthogonal body fitted mesh. The infinite flow domain is truncated to a finite extent and a Chebyshev discretization is used in the wall‐normal direction. The azimuthal direction is periodic and a conventional Fourier expansion is used in this direction. The other wall‐tangential direction requires special treatment and a restricted Fourier expansion that satisfies the parity conditions across the poles is used. Issues including spatial and temporal discretization, efficient inversion of the pressure Poisson equation, outflow boundary condition and stability restriction at the pole are discussed. The solver has been validated primarily by simulating steady and unsteady flow past a sphere at various Reynolds numbers and comparing key quantities with corresponding data from experiments and other numerical simulations. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
We consider a Leray model with a deconvolution‐based indicator function for the simulation of incompressible fluid flow at moderately large Reynolds number (in the range of a few thousands) with under‐resolved meshes. For the implementation of the model, we adopt a three‐step algorithm called evolve–filter–relax that requires (i) the solution of a Navier–Stokes problem, (ii) the solution of a Stokes‐like problem to filter the Navier–Stokes velocity field, and (iii) a final relaxation step. We take advantage of a reformulation of the evolve–filter–relax algorithm as an operator‐splitting method to analyze the impact of the filter on the final solution versus a direct simulation of the Navier–Stokes equations. In addition, we provide some direction for tuning the parameters involved in the model based on physical and numerical arguments. Our approach is validated against experimental data for fluid flow in an idealized medical device (consisting of a conical convergent, a narrow throat, and a sudden expansion, as recommended by the U.S. Food and Drug Administration). Numerical results are in good quantitative agreement with the measured axial components of the velocity and pressures for two different flow rates corresponding to turbulent regimes, even for meshes with a mesh size more than 40 times larger than the smallest turbulent scale. After several numerical experiments, we perform a preliminary sensitivity analysis of the computed solution to the parameters involved in the model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A formula for the flow resistance factors in a pipe with a sudden expansion of the cross section at Reynolds numbers of 0.2 to 10 is obtained by numerical solution of the complete Navier–Stokes equations for incompressible fluids. The flow resistance factors obtained using the derived formula are compared to those found by numerical solution of the Navier–Stokes equations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号