首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The ab initio/Rice-Ramsperger-Kassel-Marcus (RRKM) approach has been applied to investigate the photodissociation mechanism of the azulene cation at different values of the photon energy. Reaction pathways leading to various decomposition products have been mapped out at the G3(MP2,CC)//B3LYP level and then the RRKM and microcanonical variational transition state theories have been applied to compute rate constants for individual reaction steps. Relative product yields (branching ratios) for the dissociation products have been calculated using the steady-state approach. The results show that a photoexcited azulene cation can readily isomerize to a naphthalene cation. The major dissociation channels are elimination of atomic hydrogen, an H2 molecule, and acetylene. The branching ratio of the H elimination channel decreases with an increase of the photon energy. The branching ratio of the acetylene elimination as well as that of the H2 elimination rise as the photon energy increases. The main C8H6+ fragment at all photon energies considered is a pentalene cation, and its yield decreases slightly with increasing excitation energy, whereas the branching ratios of the other C8H6+ fragments, phenylacetylene and benzocyclobutadiene cations, grow.  相似文献   

3.
A thorough ab initio investigation is conducted on all possible hydrogen migration pathways for the 1-ethyl, 1-propyl, 1-butyl, 1-pentyl, 1-hexyl, 1-heptyl, and 1-octyl radicals in order to determine underlying trends in reaction enthalpies, activation energies, Arrhenius A-factors, tunneling, and rate coefficients. The G4, G2, and CBS-Q composite methods are used to determine the enthalpy of reaction and activation energy barrier for each reaction. Each method shows excellent agreement with eight experimental enthalpy of reaction values, with root mean squared values of 0.8, 0.9, and 0.6 kcal mol(-1) for CBS-Q, G2, and G4, respectively. Differences in barrier heights, A-factors, tunneling, and rate coefficients are observed for axial and equatorial arrangements as well as between secondary hydrogen migration sites, depending on the location of the secondary site relative to the terminal carbon. The validity of using cycloalkane model systems to estimate rate parameters is also assessed. The failure of two key assumptions inherent to the cycloalkane models, resulting in a breakdown in the accuracy of these methods for larger transition states, is discussed. This study has significant ramifications for future theoretical, experimental, and modeling studies involving the decomposition of n-alkanes.  相似文献   

4.
Alkylperoxy and hydroperoxyalkyl radicals are key reactive intermediates in hydrocarbon oxidation mechanisms. An understanding of the interconversion of these two species via a hydrogen migration reaction is of fundamental importance to the prediction of chain branching reactions and end product composition. An extensive ab initio investigation of the hydrogen migration reaction in 1-ethyl, 1-propyl, 1-butyl, 1-pentyl, and 1-hexylperoxy radicals is conducted to assess the validity of using cycloalkanes to model the ring strain of their transition states as well as the effect of both location of the migrating hydrogen and directionality of the remaining alkyl chain in the transition state of the reaction involving a secondary hydrogen. The G2 and CBS-Q composite methods are used to determine the activation energy and enthalpy of reaction relative to the alkylperoxy radical. Both methods show good agreement with five experimentally determined reaction enthalpies, having root mean squared deviations of 0.7 and 1.3 kcal mol(-1) for the CBS-Q and G2 methods, respectively. The effect of hydrogen abstraction site and transition state geometry, particularly axial and equatorial geometries of the remaining alkyl chain, on the activation energy, Arrhenius A-factor, tunneling, and rate coefficient are discussed. Differences between terminal adjacent and nonterminal adjacent secondary sites result in small but consistent differences in barrier height. Failure of key assumptions within the cycloalkane based estimation method leads to the break down in the accuracy for both small and large transition states. For large transition states, the breakdown of these assumptions also results in the failure of the current cycloalkane method as a conceptual model. Of great interest is the observed alteration in the preferred H-migration from the 1,5 to the 1,6 H-migration within the temperature region where these reactions are particularly important to the combustion mechanism.  相似文献   

5.
The fragment ion formation characteristics of the radical anions generated from hexahydro-1,3,5-trinitrotriazine (RDX) and its three nitroso metabolites were studied using GC/MS with negative chemical ionization (NCI) to understand the fragmentation mechanisms responsible for the formation of the most abundant ions observed in their NCI mass spectra. Ab initio and density functional theory calculations were used to calculate relative free energies for different fragment ion structures suggested by the m/z values of the most abundant ions observed in the NCI mass spectra. The NCI mass spectra of the four nitramines are dominated by ions formed by the cleavage of nitrogen-nitrogen and carbon-nitrogen bonds in the atrazine ring. The most abundant anions in the NCI mass spectra of these nitramines have the general formulas C(2)H(4)N(3)O (m/z 86) and C(2)H(4)N(3)O(2) (m/z 102). The analyses of isotope-labeled standards indicate that these two ions are formed by neutral losses that include two exocylic nitrogens and one atrazine ring nitrogen. Our calculations and observations of the nitramine mass spectra suggest that the m/z 86 and m/z 102 ions are formed from either the (M--NO)(-) or (M--NO(2))(-) fragment anions by a single fragmentation reaction producing neutral losses of CH(2)N(2)O or CH(2)N(2)O(2) rather than a set of sequential reactions involving neutral losses of HNO(2) or HNO and HCN.  相似文献   

6.
7.
A recently developed ab initio MO theory including solvent effects has been applied to a typical cation-anion reaction, the SN2 reaction of the trimethylsulfonium cation with the chloride anion. In the gas phase, the trimethylsulfonium and chloride ions are unstabilized, and the reaction is expected to proceed rapidly. In aqueous solution, the reactant ions are largely stabilized, and the reaction has been predicted to be endothermic, with an activation energy of 30–40 kcal/mol. This potential energy profile, which agrees with experimental results, has been well elucidated by differential solvation at several stages of the reaction path. At the transition state of this reaction, the C and H atoms in the transferring CH3 group are almost in a plane that is perpendicular to the Cl(SINGLE BOND)C(SINGLE BOND)S line, reflecting the concerted nature of the reaction. The population analysis has shown that the electrons in the C(SINGLE BOND)S bond are mostly withdrawn by the sulfur atom at the transition state and that the electron transfer from Cl to CH3 occurs after the transition state. The calculated activation energy for the reaction in ethanol is smaller than that in water. This agrees with experiments. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
After the separation of the donor, the aeceptor, and the σ-type bridge from the π-σ-π system, the geometries of biphenyl, biphenyl anion radical, naphthalene, and naphthalene anion radical are optimized, and then the reorganization energy for the intermolecular electron transfer (ET) at the levels of HF/4-31G and HF/DZP is calculated. The ET matrix elements of the self-exchange reactions of the π-σ-π systems have been calculated by means of both the direct calculation based on the variational principle, and the transition energy between the molecular orbitals at the linear coordinate R=0.5. For the cross reactions, the ET matrix element and the geometry of the transition state are determined by searching the minimum energy splitting △_(min) along the reaction coordinate. In the evaluation of the solvent reorganization energy of the ET in solution, the Marcus' two-sphere model has been invoked. A few of ET rate constants for the intramolecular ET reactions for the π-σ-π systems, which contain  相似文献   

9.
After the separation of the donor, the acceptor, and the σ-type bridge from the π-σ-π system, the geometries of biphenyl, biphenyl anion radical, naphthalene, and naphthalene anion radical are optimized, and then the reorganization energy for the intermolecular electron transfer (ET) at the levels of HF/4-31G and HF/DZP is calculated. The ET matrix elements of the self-exchange reactions of theπ-σ-π systems have been calculated by means of both the direct calculation based on the variational principle, and the transition energy between the molecular orbitals at the linear coordinateR = 0.5. For the cross reactions, the ET matrix element and the geometry of the transition state are determined by searching the minimum energy splitting Δmin along the reaction coordinate. In the evaluation of the solvent reorganization energy of the ET in solution, the Marcus’ two- sphere model has been invoked. A few of ET rate constants for the intramolecular ET reactions for the π-σ-π systems, which contain the biphenylyl as the donor and both biphenylyl and naphthyl as the acceptor, have been obtained. Project supported by the National Natural Science Foundation of China (Grant Nos. 29706104 and 29573112), the State Key Laboratory of Theoretical and Computational Chemistry of Jilin University.  相似文献   

10.
The HOOO radical plays a crucial role in atmospheric processes involving the OH radical and O(2) molecule. We present an ab initio molecular orbital theory study on the decomposition reaction of the first excited state HOOO((2)A') with respect to OH and O(2). The geometries and harmonic vibrational frequencies of all stationary points are calculated at the CASSCF and MRCI levels of theory in conjunction with the 6-31+G(d,p) basis set. The potential energy profile of the decomposition reaction is studied at the CASSCF/6-31+G(d,p) level of theory, in which the complete valence orbitals and electrons are included in the active space. The energies of the potential energy profile are further refined at the CASPT2 and MRCI levels of the theory. Additionally, we have determined the interesting reaction process: the HOOO((2)A') radical with C(s) symmetry does not dissociate to OH((2)Pi) and O(2)((3)Sigma(-)(g)) directly as this is forbidden by orbital symmetry, but dissociates to OH((2)Pi) and O(2)((3)Sigma(-)(g)) via the change in symmetry from C(s) to C(infinity v) symmetry with a low barrier.  相似文献   

11.
An electroconductive polymer doped with tetracyanoethylene anion radicals was obtained by chemical oxidation of undoped polypyrrole. Its electronic absorption spectra were investigated. Broadening of the line of the EPR spectrum was observed when the anion radical was introduced into the polymer; this may be due to slow spin-spin exchange between the radical and the polar chain of the polymer.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 29, No. 3, pp. 260–263, May–June, 1993.This research was financed by the State Committee of Ukraine for Problems in Science and Technology from fundamental-research.  相似文献   

12.
The structure and stability of the various conformations of isobutylbenzene are studied using ab initio molecular orbital theory. The calculations show that coupling between the structural units is important. The results indicate that complete geometry optimization of the stable and transition structures of isobutylbenzene produce significant changes in geometrical parameters and charge distributions of this molecule when compared with the corresponding results obtained using the rigid-rotor approximation. These changes are particularly noticeable in one of the gauche conformations and in transition structures of isobutylbenzene generated by the phenyl group rotation. For polystyrene, these results present evidence that there is a strong coupling between the chain-backbone folding and the rotation of the phenyl group. Multidimensional potential energy surfaces are displayed using a topological representation. © 1992 John Wiley & Sons, Inc.  相似文献   

13.
A composite coupled cluster methodology is used with systematic sequences of correlation consistent basis sets to accurately determine the structure, vibrational frequencies, and isotopic shifts for trans-HNNO ((2)A'), cis-HNNO ((2)A'), and ONHN ((2)A'). Anharmonic corrections to the vibrational frequencies and rotational constants are obtained using density functional theory. With basis sets larger than double-zeta, large differences between restricted open-shell Hartree-Fock (ROHF)-based and unrestricted Hartree-Fock (UHF)-based coupled cluster harmonic frequencies are calculated, with the UHF-based ones judged to be more reliable based on an analysis of the orbital hessian eigenvalues. The final calculated anharmonic vibrational band origins are generally in good agreement with the experimental values measured in rare gas matrices. The calculation of the vibrational band origins of the isovalent NO(2) molecule at similar levels of theory exhibits an agreement with experiment to within a few wavenumbers. In the latter case, however, a ROHF treatment was required since the UHF approach failed to provide realistic frequencies for the antisymmetric stretching mode. The heat of formation at 0 K of trans-HNNO is calculated to be 50.5 ± 0.5 kcal∕mol using a very similar composite coupled cluster methodology as in the structure and harmonic frequency determinations.  相似文献   

14.
Results of ab initio UHF and SWX α calculations concerning the geometrical and electronic properties of the GeF3 and SiF3 radicals are presented. Comparison of the theoretical estimates of inversion barriers, ionization potentials and electron affinities obtained for three XF3 radicals (X=Ge, Si, C) is made.  相似文献   

15.
Ab initio molecular orbital calculations were carried out to investigate the inter-radical interaction of the paired p-phenylenediamine radical cations in the singlet state. After initial optimization of the dimer in the parallel sandwich (D2h) and parallel displaced (Cs) configurations at the B3LYP/6-31G* theoretical level, the MP2/6-31G* and B3LYP/6-31G* single energies of the dimer were calculated as a function of the inter-radical distance R. The depths of the potential minima near R = 3.2 A were estimated to be in the order of the hydrogen bonding energy, assuming that the electrostatic contribution between the cations is canceled out by the attractive contributions due to the counter anions on the aspect of a simple electrostatic model. This can be related to the indications of the cation dimer formation in solution in the presence of counter anions at a low temperature reported previously in the literature by resonance Raman and electronic absorption spectra. The inter-radical (Raman active) frequencies of the dimer were calculated, one of which corresponds to the reported value at 161 cm(-1) observed in the resonance Raman spectrum in ethanol at 200 K by Yokoyama and Maeda (Chem. Phys. Lett. 48 (1977) 59).  相似文献   

16.
Fluorospherands (F‐spherands) are highly preorganized hosts composed of fluorobenzene or 4‐methylfluorobenzene units attached to one another at their 2,6‐positions. To understand the intrinsic factors affecting cation complexation, we investigated the complexation behavior between F‐spherands and cations using density functional theory (DFT) at the level of B3LYP/6‐31G**. The F6‐spherand (C6H3F)6, ( 1 ) has a highly preorganized spherical cavity, which can encapsulate Li+ and Na+. Its cavity is not big enough for K+ and NH, which prefer external binding. Plausible conformations were studied for F8‐spherand (C6H3F)8. Conformer of D2d symmetry ( 2b ) is more stable than that of D4d ( 2a ), in agreement with NMR experiments. The cavity size of F8‐spherand is big enough to encapsulate all cations studied. However, the cavity size of 2b is smaller than that of 2a , which resulted in the guest selectivity. Upon complexation, 2b conformation is more stable for Li+ and Na+, while 2a conformation is preferred for larger cations such as K+ and NH. Thus, the ab initio calculations over these highly preorganized fluorospherands give important insights into their host–guest chemistry. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

17.
Calculations at the SCF level and with inclusion of correlation were carried out on a portion of the potential 1A′ state of the cyclopropenyl anion which was found to be nonplanar in its most stable geometry.  相似文献   

18.
The potential energy curves for the lowest (3)Sigma(-), (3)Pi, and (5)Sigma(-) states of the KN molecule have been calculated by the multireference singles and doubles configuration interaction method, including Davidson's corrections for quadruple excitations [MRCI(+Q)]. It is shown that the former two are bound, while the last one is repulsive. The electronic ground state of KN is predicted as (3)Sigma(-) state, although the term energy of the (3)Pi state is very small, 177.3 cm(-1). The binding energy for the (3)Sigma(-) state is evaluated as 0.838 eV, the rotational constant B(0) as 0.250 63 cm(-1), and harmonic frequency as 324.4 cm(-1). The spin-orbit coupling effects between the (3)Sigma(-) and (3)Pi states of KN are evaluated and discussed. The same MRCI(+Q) computational procedures are applied to the isovalent LiN, KC, KO, and KCl to confirm the accuracy of present calculations. Theoretical spectroscopic constants presented here will inspire experimental studies of KN.  相似文献   

19.
The geometric structures and isomeric stabilities of various stationary points in Si(3)H(3) neutral and its anion are investigated at the coupled-cluster singles, doubles (triples) [CCSD(T)] level of theory. For geometrical surveys, the basis sets used are of the Dunning's correlation consistent basis sets of triple-zeta quality for the neutral. To the anions, the Dunning's correlation consistent basis sets of double-zeta quality with diffuse functions are applied. For the three lower-lying anion isomers, the Dunning's correlation consistent basis sets of triple-zeta quality with diffuse functions (aug-cc-pVTZ) are also used. The final energies for the optimized stationary points are calculated at the CCSD(T) level of theory with the aug-cc-pVTZ basis sets. The basis sets of 6-311++G(3df,2pd) were also used for the lower-lying anion isomers. The Gaussian-2 method was performed only for the lower-lying anion isomers to clarify the relative stabilities. The global minimum neutral 1 (C(1):(2)A) has an unsymmetrical hydrogen-bridged bond; the conformer 2 in C(s) symmetry is a saddle point connecting the two equivalent isomers 1. Two lower-lying isomers (3 and 4) are also predicted within the energy range of 20 kJmol. In the anion, however, the conformer 4 (C(s):(1)A(')) with five formal valence electrons is a global minimum. Two more isomers (2 and 3) lie within 20 kJmol as in the neutral; the conformer 1 converts to the isomer 2. The quartets for the neutrals and diradical triplets for the anions were further studied; lower-lying quartets and triplets, competing with the corresponding doublet and singlet, respectively, were not found in the present systems. The vertical and adiabatic electron affinities of the global minimum neutral 1, producing the second lowest-lying anion isomer 2, amount to 2.18 and 2.35 eV, respectively, at the CCSD(T)/aug-cc-pVTZ level of theory. The electron addition to the third lowest-lying neutral isomer 4 produces the largest vertical electron affinities of 2.48 eV. The D(3h) structure, being the global minimum in the corresponding Si(3)H(3) (+) cation (trisilacyclopropenyl cation), converts to the isomer 8 (C(s)) or 11 (C(2)) due to the Jahn-Teller effect in the Si(3)H(3) neutral.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号