首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
A three‐dimensional, non‐hydrostatic pressure, numerical model with kε equations for small amplitude free surface flows is presented. By decomposing the pressure into hydrostatic and non‐hydrostatic parts, the numerical model uses an integrated time step with two fractional steps. In the first fractional step the momentum equations are solved without the non‐hydrostatic pressure term, using Newton's method in conjunction with the generalized minimal residual (GMRES) method so that most terms can be solved implicitly. This method only needs the product of a Jacobian matrix and a vector rather than the Jacobian matrix itself, limiting the amount of storage and significantly decreasing the overall computational time required. In the second step the pressure–Poisson equation is solved iteratively with a preconditioned linear GMRES method. It is shown that preconditioning reduces the central processing unit (CPU) time dramatically. In order to prevent pressure oscillations which may arise in collocated grid arrangements, transformed velocities are defined at cell faces by interpolating velocities at grid nodes. After the new pressure field is obtained, the intermediate velocities, which are calculated from the previous fractional step, are updated. The newly developed model is verified against analytical solutions, published results, and experimental data, with excellent agreement. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
The study of axisymmetric flows is of interest not only from an academic point of view, due to the existence of exact solutions of Navier–Stokes equations, but also from an industrial point of view, since these kind of flows are frequently found in several applications. In the present work the development and implementation of a finite element algorithm to solve Navier–Stokes equations with axisymmetric geometry and boundary conditions is presented. Such algorithm allows the simulation of flows with tangential velocity, including free surface flows, for both laminar and turbulent conditions. Pseudo‐concentration technique is used to model the free surface (or the interface between two fluids) and the k–ε model is employed to take into account turbulent effects. The finite element model is validated by comparisons with analytical solutions of Navier–Stokes equations and experimental measurements. Two different industrial applications are presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
A semi‐discrete finite element methodology for the modelling of transient free surface flows in the context of Eulerian interface capturing is proposed. The focus of this study is put on the choice of an appropriate time integration strategy for the accurate modelling of the dynamics of free surfaces and of interfacial physics. It is composed of an adaptive time integration scheme for the Navier–Stokes equations, and of the implicit midpoint rule for the transport equation of the Eulerian marker variable. The adaptive scheme allows the automatic determination of a time‐step size that follows the physics of the problem under study, which facilitates the accurate modelling of stiff free surface flows. It is shown that the implicit midpoint rule reduces mass loss for each fluid. Various free surface flow problems are studied to verify and validate the proposed time integration strategy. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
The time splitting method is frequently used in numerical integration of flow equations with source terms since it allows almost independent programming for the source part. In this paper we will consider the question of convergence to steady state of the time splitting method applied to k–ε turbulence models. This analysis is derived from a properly defined scalar study and is carried out with success for the coupled k–ε equations. It is found that the time splitting method does not allow convergence to steady state for any choice of finite values of the time step. Numerical experiments for some typical turbulent compressible flow problems support the fact that the time splitting method is always nonconvergent, while its nonsplitting counterpart is convergent. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
A three‐dimensional (3‐D) numerical method for solving the Navier–Stokes equations with a standard k–ε turbulence model is presented. In order to couple pressure with velocity directly, the pressure is divided into hydrostatic and hydrodynamic parts and the artificial compressibility method (ACM) is employed for the hydrodynamic pressure. By introducing a pseudo‐time derivative of the hydrodynamic pressure into the continuity equation, the incompressible Navier–Stokes equations are changed from elliptic‐parabolic to hyperbolic‐parabolic equations. In this paper, a third‐order monotone upstream‐centred scheme for conservation laws (MUSCL) method is used for the hyperbolic equations. A system of discrete equations is solved implicitly using the lower–upper symmetric Gauss–Seidel (LU‐SGS) method. This newly developed numerical method is validated against experimental data with good agreement. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
7.
The gridless smoothed particle hydrodynamics (SPH) method is now commonly used in computational fluid dynamics (CFD) and appears to be promising in predicting complex free‐surface flows. However, increasing flow complexity requires appropriate approaches for taking account of turbulent effects, whereas some authors are still working without any turbulence closure in SPH. A review of recently developed turbulence models adapted to the SPH method is presented herein, from the simplistic point of view of a one‐equation model involving mixing length to more sophisticated (and thus realistic) models like explicit algebraic Reynolds stress models (EARSM) or large eddy simulation (LES). Each proposed model is tested and validated on the basis of schematic cases for which laboratory data, theoretical or numerical solutions are available in the general field of turbulent free‐surface incompressible flows (e.g. open‐channel flow and schematic dam break). They give satisfactory results, even though some progress should be made in the future in terms of free‐surface influence and wall conditions. Recommendations are given to SPH users to apply this method to the modelling of complex free‐surface turbulent flows. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
A three‐dimensional numerical model has been developed to simulate stratified flows with free surfaces. The model is based on the Reynolds‐averaged Navier–Stokes (RANS) equations with variable fluid density. The equations are solved in a transformed σ‐coordinate system with the use of operator‐splitting method (Int. J. Numer. Meth. Fluids 2002; 38 :1045–1068). The numerical model is validated against the one‐dimensional diffusion problem and the two‐dimensional density‐gradient flow. Excellent agreements are obtained between numerical results and analytical solutions. The model is then used to study transport phenomena of dumped sediments into a water body, which has been modelled as a strongly stratified flow. For the two‐dimensional problem, the numerical results compare well with experimental data in terms of mean particle falling velocity and spreading rate of the sediment cloud for both coarse and medium‐size sediments. The model is also employed to study the dumping of sediments in a three‐dimensional environment with the presence of free surface. It is found that during the descending process an annulus‐like cloud is formed for fine sediments whereas a plate‐like cloud for medium‐size sediments. The model is proven to be a good tool to simulate strongly stratified free surface flows. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Standard, modified and non-linear k–ε: turbulence models are validated against three axisymmetric flow problems—flow through a pipe expansion, flow through a pipe constriction and an impinging jet problem—to underpin knowledge about the solution quality obtained from two-equation turbulence models. The extended models improve the prediction of turbulence as a flow approaches a stagnation point and the non-linear model allows for the prediction of anisotropic turbulence. Significantly different values for the non-linear model coefficients are proposed in comparison with values found in the literature. Nevertheless, current turbulence models are still unable to accurately predict the spreading rate of shear layers. © 1997 by John Wiley & Sons, Ltd. Int. j. numer. methods fluids, 24: 965–986, 1997.  相似文献   

10.
Developing Couette–Poiseuille flows at Re=5000 are studied using a low Reynolds number k–ϵ two‐equation model and a finite element formulation. Mesh‐independent solutions are obtained using a standard Galerkin formulation and a Galerkin/least‐squares stabilized method. The predictions for the velocity and turbulent kinetic energy are compared with available experimental results and to the DNS data. Second moment closure's solutions are also compared with those of the k–ϵ model. The deficiency of eddy viscosity models to predict dissymmetric low Reynolds number channel flows has been demonstrated. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents a finite difference technique for solving incompressible turbulent free surface fluid flow problems. The closure of the time‐averaged Navier–Stokes equations is achieved by using the two‐equation eddy‐viscosity model: the high‐Reynolds k–ε (standard) model, with a time scale proposed by Durbin; and a low‐Reynolds number form of the standard k–ε model, similar to that proposed by Yang and Shih. In order to achieve an accurate discretization of the non‐linear terms, a second/third‐order upwinding technique is adopted. The computational method is validated by applying it to the flat plate boundary layer problem and to impinging jet flows. The method is then applied to a turbulent planar jet flow beneath and parallel to a free surface. Computations show that the high‐Reynolds k–ε model yields favourable predictions both of the zero‐pressure‐gradient turbulent boundary layer on a flat plate and jet impingement flows. However, the results using the low‐Reynolds number form of the k–ε model are somewhat unsatisfactory. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, the performance of the incompressible SPH (ISPH) method and an improved weakly compressible SPH (IWCSPH) method for free surface incompressible flows are compared and analyzed. In both methods, the Navier–Stokes equations are solved, and no artificial viscosity is used. The ISPH algorithm in this paper is based on the classical SPH projection method with common treatments on solid boundaries and free surfaces. The IWCSPH model includes some advanced corrective algorithms in density approximation and solid boundary treatment (SBT). In density approximation, the moving least squares (MLS) approach is applied to re‐initialize density every several steps to obtain smoother and more stable pressure fields. An improved coupled dynamic SBT algorithm is implemented to obtain stable pressure values near solid wall areas and, thus, to minimize possible numerical oscillations brought in by the solid boundaries. Three representative numerical examples, including a benchmark test for hydrostatic pressure, a dam breaking problem and a liquid sloshing problem, are comparatively analyzed with ISPH and IWCSPH. It is demonstrated that the present IWCSPH is more attractive than ISPH in modeling free surface incompressible flows as it is more accurate and more stable with comparable or even less computational efforts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Vortex methods have found wide applications in various practical problems. The use of vortex methods in free surface flow problems, however, is still very limited. This paper demonstrates a vortex method for practical computation of non-linear free surface flows produced by moving bodies. The method is a potential flow formulation which uses the exact non-linear free surface boundary condition at the exact location of the instantaneous free surface. The position of the free surface, on which vortices are distributed, is updated using a Lagrangian scheme following the fluid particles on the free surface. The vortex densities are updated by the non-linear dynamic boundary condition, derived from the Euler equations, with an iterative Lagrangian numerical scheme. The formulation is tested numerically for a submerged circular cylinder in unsteady translation. The iteration is shown to converge for all cases. The results of the unsteady simulations agree well with classical linearized solutions. The stability of the method is also discussed.  相似文献   

14.
This work describes a methodology to simulate free surface incompressible multiphase flows. This novel methodology allows the simulation of multiphase flows with an arbitrary number of phases, each of them having different densities and viscosities. Surface and interfacial tension effects are also included. The numerical technique is based on the GENSMAC front‐tracking method. The velocity field is computed using a finite‐difference discretization of a modification of the Navier–Stokes equations. These equations together with the continuity equation are solved for the two‐dimensional multiphase flows, with different densities and viscosities in the different phases. The governing equations are solved on a regular Eulerian grid, and a Lagrangian mesh is employed to track free surfaces and interfaces. The method is validated by comparing numerical with analytic results for a number of simple problems; it was also employed to simulate complex problems for which no analytic solutions are available. The method presented in this paper has been shown to be robust and computationally efficient. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The hydrostatic pressure assumption has been widely used in studying water movements in rivers, lakes, estuaries, and oceans. While this assumption is valid in many cases and has been successfully used in numerous studies, there are many cases where this assumption is questionable. This paper presents a three‐dimensional, hydrodynamic model for free‐surface flows without using the hydrostatic pressure assumption. The model includes two predictor–corrector steps. In the first predictor–corrector step, the model uses hydrostatic pressure at the previous time step as an initial estimate of the total pressure field at the new time step. Based on the estimated pressure field, an intermediate velocity field is calculated, which is then corrected by adding the non‐hydrostatic component of the pressure to the estimated pressure field. A Poisson equation for non‐hydrostatic pressure is solved before the second intermediate velocity field is calculated. The final velocity field is found after the free surface at the new time step is computed by solving a free‐surface correction equation. The numerical method was validated with several analytical solutions and laboratory experiments. Model results agree reasonably well with analytical solutions and laboratory results. Model simulations suggest that the numerical method presented is suitable for fully hydrodynamic simulations of three‐dimensional, free‐surface flows. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
A numerical method for solving three‐dimensional free surface flows is presented. The technique is an extension of the GENSMAC code for calculating free surface flows in two dimensions. As in GENSMAC, the full Navier–Stokes equations are solved by a finite difference method; the fluid surface is represented by a piecewise linear surface composed of quadrilaterals and triangles containing marker particles on their vertices; the stress conditions on the free surface are accurately imposed; the conjugate gradient method is employed for solving the discrete Poisson equation arising from a velocity update; and an automatic time step routine is used for calculating the time step at every cycle. A program implementing these features has been interfaced with a solid modelling routine defining the flow domain. A user‐friendly input data file is employed to allow almost any arbitrary three‐dimensional shape to be described. The visualization of the results is performed using computer graphic structures such as phong shade, flat and parallel surfaces. Results demonstrating the applicability of this new technique for solving complex free surface flows, such as cavity filling and jet buckling, are presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
18.
19.
20.
In this paper, we present a finite element model for free surface flows on fixed meshes. The main novelty of the approach, compared with typical fixed mesh finite element models for such flows, is that we take advantage of the particularities of free surface flow, instead of considering it a particular case of two‐phase flow. The fact that a given free surface implies a known boundary condition on the interface, allows us to solve the Navier–Stokes equations on the fluid domain uncoupled from the solution on the rest of the finite element mesh. This, together with the use of enhanced integration allows us to model low Froude number flows accurately, something that is not possible with typical two‐phase flow models applied to free surface flow. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号