首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Formal properties of ensemble density functionals are examined. Expressions for the difference between energy functionals where the particle number differs by one are constructed in terms of their first functional derivatives for the universal energy functional, the electron–electron repulsion energy functional, and the interacting kinetic energy functional. Equations that must be satisfied by second and higher order functional derivatives are derived. It is also shown that the shape of ${\delta V_{ee}[\rho]\over\delta\rho({\bf r})}$ and ${\delta K[\rho]\over\delta\rho({\bf r})}$ , the functional derivatives of the mutual electron–electron repulsion, and kinetic energy, respectively, are separately particle number independent for particle numbers between successive integers. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
3.
Based on the structure of characterization of Au/Fe2O3 catalysts, the mechanism of gold activation in supported gold catalysts was proposed as follow:
The possible catalytic active state is the partially oxidized gold (Au+) with unoccupied outer d orbitals, similar to the outer d orbital structure of Pt. Thus "inert" gold can become very active for CO oxidation.  相似文献   

4.
The electrophilic additions of hydroperoxyl (HO$_{2}^{\mbox{\mathversion{bold}$\cdot$}}$) and alkylperoxyl (RO$_{2}^{\mbox{\mathversion{bold}$\cdot$}}$) radicals to substituted ethenes were studied using the AM1 semiempirical molecular orbital (MO) methods at the self‐consistent field/unrestricted Hartree–Fock (SCF/UHF) level. Reactantlike transition states were predicted for the title additions. The reactivity of an alkylperoxyl radical toward ethenes was found to be decreased as the degree of methyl (Me) substitution on the alkyl group of the radical increased. The relative reactivity and regioselectivity in HO$_{2}^{\mbox{\mathversion{bold}$\cdot$}}$ additions to substituted ethenes was suggested to be SOMO (singly occupied)‐HOMO controlled. A good correlation was established between the activation enthalpy $(\Delta H_{f}^{\ast})$ for the studied additions and the Taft polar substituent constants (σ*) of RO$_{2}^{\mbox{\mathversion{bold}$\cdot$}}$. The Evans–Polanyi correlation between $\Delta H^{\mbox{\mathversion{bold}$\cdot$}}_{f}$ and $\Delta H^{\circ}_{r}$ was justified and the validity of the Hammond postulate was indicated. The calculated results were compared with the available experimental data. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 77: 761–771, 2000  相似文献   

5.
The new polyoxotungstates H2O (1), · 28H2O (2) and H2O (3) were synthesized in aqueous solution and characterized by IR and Raman spectroscopy, energy dispersive X-ray fluorescence and single-crystal X-ray analysis. The anions in 1 and 2 are the first structurally characterized sandwich-type polyoxoanions which contain trivalent manganese atoms. The manganese atoms are coordinated by four oxygen atoms of two Keggin fragments and one water molecule, forming a square pyramid. The manganese(II) containing anions in 3 are linked via Mn–O–W-bonds, forming a two-dimensional network.Dedicated to Prof. M.T. Pope on the occasion of his retirement.  相似文献   

6.
For getting an insight into the mechanism of atmospheric autoxidation of sulfur(IV), the kinetics of this autoxidation reaction catalyzed by CoO, Co2O3 and Ni2O3 in buffered alkaline medium has been studied, and found to be defined by Eqs. I and II for catalysis by cobalt oxides and Ni2O3, respectively.
(I)
(II)
The values of empirical rate parameters were: A{0.22(CoO), 0.8 L mol−1s−1 (Co2O3)}, K 1{2.5 × 102 (Ni2O3)}, K 2{2.5 × 102(CoO), 0.6 × 102 (Co2O3)} and k 1{5.0 × 10−2(Ni2O3), 1.0 × 10−6(CoO), 1.7 × 10−5 s−1(Co2O3)} at pH 8.20 (CoO and Co2O3) and pH 7.05 (Ni2O3) and 30 °C. This is perhaps the first study in which the detailed kinetics in the presence of ethanol, a well known free radical scavenger for oxysulfur radicals, has been carried out, and the rate laws for catalysis by cobalt oxides and Ni2O3 in the presence of ethanol were Eqs. III and IV, respectively.
(III)
(IV)
For comparison, the effect of ethanol on these catalytic reactions was studied in acidic medium also. In addition, alkaline medium, the values of the inhibition factor C were 1.9 × 104 and 4.0 × 10L mol−1 s for CoO and Co2O3, respectively; for Ni2O3, C was only 3.0 × 102 only. On the other hand, in acidic medium, the values of this factor were all low: 20 (CoO), 0.7 (Co2O3) and 1.4 (Ni2O3). Based on these results, a radical mechanism for CoO and Co2O3 catalysis in alkaline medium, and a nonradical mechanism for Ni2O3 in both alkaline and acidic media and for cobalt oxides in acidic media are proposed.  相似文献   

7.
Oxidation of 3-(4-methoxyphenoxy)-1,2-propanediol (MPPD) by bis(hydrogenperiodato) argentate(III) complex anion, [Ag(HIO6)2]5− has been studied in aqueous alkaline medium by use of conventional spectrophotometry. The major oxidation product of MPPD has been identified as 3-(4-methoxyphenoxy)-2-ketone-1-propanol by mass spectrometry. The reaction shows overall second-order kinetics, being first-order in both [Ag(III)] and [MPPD]. The effects of [OH] and periodate concentration on the observed second-order rate constants k′ have been analyzed, and accordingly an empirical expression has been deduced:
where [IO4 ]tot denotes the total concentration of periodate and k a = (0.19 ± 0.04) M−1 s−1, k b = (10.5 ± 0.3) M−2 s−1, and K 1 = (5.0 ± 0.8) × 10−4 M at 25.0 °C and ionic strength of 0.30 M. Activation parameters associated with k a and k b have been calculated. A mechanism is proposed, involving two pre-equilibria, leading to formation of a periodato–Ag(III)–MPPD complex. In the subsequent rate-determining steps, this complex undergoes inner-sphere electron-transfer from the coordinated MPPD molecule to the metal center by two paths: one path is independent of OH, while the other is facilitated by a hydroxide ion.  相似文献   

8.
This article reports the use of simple conductivity measurements to explore the state of small counter-ions (mostly NH 4 + and Na+) in $[\hbox{As}^{\rm III}_{12}\hbox{Ce}^{\rm III}_{16}(\hbox{H}_2\hbox{O})_{36}\hbox{W}_{148}\hbox{O}_{524}]^{76-} (\{\hbox{W}_{148}\})$ and $[\hbox{Mo}_{132}\hbox{O}_{372}(\hbox{CH}_{3}\hbox{COO})_{30} (\hbox{H}_{2}\hbox{O})_{72}]^{42-} (\{\hbox{Mo}_{132}\})$ macroanionic solutions. All the solutions are dialyzed to remove the extra electrolytes. Conductivity measurements on {(NH4)70Na6W148} and {(NH4)42Mo132} solutions at different concentrations both before and after dialysis indicate that the state of counter-ions has obvious concentration dependence. The “counter-ion association” phenomenon, that is, some small counter-ions closely associate with macroanions and move together, has been observed in both types of macroionic solutions above certain concentration. The association of counter-ions in hydrophilic macroionic solutions provides support on our previous speculation that the counter-ions might be responsible for the unique self-assembly of such macroanions into single-layer blackberry-type structures.  相似文献   

9.
10.
Two new alkaline metal borates containing 1D{B5}/{B6}oxoboron helical chains,namely Na0.5[B5O8(OH)2]0.5[B5O6(OH)2]0.5·0.5H3O(1)and NaKCs[B6O9(OH)3](2)were synthesized under solvothermal conditions.Compound 1 contains the interesting alternative left-and right-handed helical{[B5O8(OH)2][B5O6(OH)2]}2-({B5}-1 and{B5}-2)1D chains and compound 2 possesses the similar[B6O11(OH)3]7-({B6})chains.Their 1D chains are further assembled into 2D layers and 3D supramolecular frameworks through O-H…O hydrogen bonds.In addition,the UV cutoff edge of compounds 1 and 2 is both below 190 nm.  相似文献   

11.
On Organophosphorus Compounds. XV. Preparation and Reactions of Trimethylsilyl Esters of Phosphinic Acids Trimethylsilylesters of Phosphinic acids R2P(X)YSi(CH3)3 (R ? CH3, C2H5, C3H7, t?C4H9, C6H5; X, Y ? O, S) were prepared by 7 different methods as in some cases easily hydrolysable but thermally remarkably stable compounds. The properties and some reactions of these substances are reported, their structures confirmed by IR? as well as 1H- and 31P-NMR-spectroscopy. Dimethylsilylen-bis(phosphinic acid esters) were obtained according to \documentclass{article}\pagestyle{empty}\begin{document}$ 2{\rm R}_{2} {\rm P(\rm X)\rm ONH}_{4} + {\rm R}_{\rm 2} {\rm SiCl}_{2} \to 2{\rm E NH}_{4} {\rm Cl + R}_{2} {\rm P(X) - O - SiR}_{2} - {\rm O - P(X)R}_{2} ({\rm R = CH}_{3};{\rm X = O,S}) $\end{document}.  相似文献   

12.
Conduction band electrons produced by band gap excitation of TiO2-particles reduce efficiently thiosulfate to sulfide and sulfite. \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm 2e}_{{\rm cb}}^ - ({\rm TiO}_{\rm 2}) + {\rm S}_{\rm 2} {\rm O}_3^{2 - } \longrightarrow {\rm S}^{2 - } + {\rm SO}_3^{2 - } $\end{document} This reaction is confirmed by electrochemical investigations with polycrystalline TiO2-electrodes. The valence band process in alkaline TiO2-dispersions involves oxidation of S2O to tetrathionate which quantitatively dismutates into sulfite and thiosulfate, the net reaction being: \documentclass{article}\pagestyle{empty}\begin{document}$ 2{\rm h}^{\rm + } ({\rm TiO}_{\rm 2}) + 0.5{\rm S}_{\rm 2} {\rm O}_{\rm 3}^{{\rm 2} - } + 1.5{\rm H}_{\rm 2} {\rm O} \longrightarrow {\rm SO}_3^{2 - } + 3{\rm H}^{\rm + } $\end{document} This photodriven disproportionation of thiosulfate into sulfide and sulfite: \documentclass{article}\pagestyle{empty}\begin{document}$ 1.5{\rm H}_{\rm 2} {\rm O } + 1.5{\rm S}_{\rm 2} {\rm O}_{\rm 3}^{{\rm 2} - } \mathop \to \limits^{h\nu} 2{\rm SO}_3^{2 - } + {\rm S}^{{\rm 2} - } + 3{\rm H}^{\rm + } $\end{document} should be of great interest for systems that photochemically split hydrogen sulfide into hydrogen and sulfur.  相似文献   

13.
We present structural, electronic, bonding and vibrational properties of new type hydrogen storage material calcium amidoborane ${\rm Ca}({\rm NH}_{2}{\rm BH}_{3})_{2}$ by first principles density functional theory using plane wave pseudopotential method. The calculated ground state properties are in good agreement with experiments. The computed Bulk modulus of ${\rm Ca}({\rm NH}_{2}{\rm BH}_{3})_{2}$ is found to be 28.7 GPa which is slightly higher than that of ${\rm NH}_{3}{\rm BH}_{3}$ indicating that the material is hard over ${\rm NH}_{3}{\rm BH}_{3}$ . From the band structure calculations, the compound is found to be a direct band gap insulator with a band gap of 3.27 eV at the Γ point. The calculated bandstructure shows that the top of the valance band is from the p states of N and the bottom of the conduction band is from d states of Ca. The Mulliken bond populations, Born effective charges and charge density distributions are used to analyze the bonding nature of the compound. It is found that the N‐H and B‐H bonds are covalent in nature. Further we also compared the phonon density of states and vibrational frequencies of ${\rm Ca}({\rm NH}_{2}{\rm BH}_{3})_{2}$ with ${\rm NH}_{3}{\rm BH}_{3}$ . The study reveals that in both the cases the heavier mass atoms Ca, N, B are involved in the low frequency vibrations whereas the higher frequency vibrations are from H atoms. It is also observed that the vibrational frequencies of B‐H bonds are soft in ${\rm Ca}({\rm NH}_{2}{\rm BH}_{3})_{2}$ when compared to ${\rm NH}_{3}{\rm BH}_{3}$ and thereby concluded that ${\rm Ca}({\rm NH}_{2}{\rm BH}_{3})_{2}$ is a potential hydrogen storage material for fuel cell applications when compared to ${\rm NH}_{3}{\rm BH}_{3}$ . © 2012 Wiley Periodicals, Inc.  相似文献   

14.
On Chalcogenolates. 172. Reaction of Acetamidine with Carbon Disulfide. 1. Synthesis and Properties of N-Acetimidoyl Dithiocarbamates The reaction of acetamidine H2N? C(CH3)?NH with CS2 at ?15°C yields the acetamidinium salt of N-acetimidoyl dithiocarbamic acid. It reacts with hydroxides to form the corresponding N-acetimidoyl dithiocarbamates. The properties and the thermal behaviour of the prepared compounds \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm M}[{\rm S}_2 {\rm C} - {\rm N} = {\rm C}({\rm CH}_{\rm 3} ) - {\rm NH}_2 ]{\rm with M} = [({\rm H}_2 {\rm N})_2 {\rm C} - {\rm CH}_3 ],{\rm Na} \cdot {\rm CH}_3 {\rm OH},{\rm K} \cdot {\rm H}_2 {\rm O},{\rm Rb},{\rm Cs},{\rm Tl},{\rm Pb}/2{\rm and Cd}/2 \cdot {\rm H}_2 {\rm O} $\end{document} have been described. The decomposition in solution has been studied at 20°C kinetically.  相似文献   

15.
The kinetics of oxidation of L-valine by a copper(III) periodate complex was studied spectrophotometrically. The inverse second-order dependency on [OH] was due to the formation of the protonated diperiodatocuprate(III) complex ([Cu(H3IO6)2]) from [Cu(H2IO6)2]3−. The retarding effect of initially added periodate suggests that the dissociation of copper(III) periodate complex occurs in a pre-equilibrium step in which it loses one periodate ligand. Among the various forms of copper(III) periodate complex occurring in alkaline solutions, the monoperiodatocuprate(III) appears to be the active form of copper(III) periodate complex. The observed second-order dependency of [L-valine] on the rate of reaction appears to result from formation of a complex with monoperiodatocuprate(III) followed by oxidation in a slow step. A suitable mechanism consistent with experimental results was proposed. The rate law was derived as:
- \fracd[DPC]dt = \frackK1K2K3[Cu(H2IO6)2]f3- [L -Val]f2[H3IO62 -]f[OH - ]f2.- \frac{\mathrm{d}[\mathrm{DPC}]}{\mathrm{d}t} =\frac{kK_{1}K_{2}K_{3}[\mathrm{Cu}(\mathrm{H}_{2}\mathrm{IO}_{6})_{2}]_{\mathrm{f}}^{3-} [\mathrm{L} -\mathrm{Val}]_{\mathrm{f}}^{2}}{[\mathrm{H}_{3}\mathrm{IO}_{6}^{2 -}]_{\mathrm{f}}[\mathrm{OH}^{ -} ]_{\mathrm{f}}^{2}}.  相似文献   

16.
Alternating copolymerization of butadiene with several α-olefins and of isoprene with propylene were investigated by using a mixture of VO(Acac)2, Et3Al, and Et2AlCl as catalyst. The alternating copolymerization ability of the olefins decreases in the order, propylene > 1-butene > 4-methyl-1-pentene > 3-methyl-1-butene. The study on the sequence of the copolymer of isoprene with propylene by ozonolysis reveals that the polymer chain is reasonably expressed by the sequence \documentclass{article}\pagestyle{empty}\begin{document}$ \rlap{--} [{\rm CH}_{\rm 2} \hbox{--} {\rm CH} \hbox{=\hskip-1pt=} {\rm C(CH}_{\rm 3}) \hbox{--} {\rm CH}_{\rm 2} \hbox{--} {\rm CH(CH}_{\rm 3}) \hbox{--} {\rm CH}_{\rm 2} \rlap{--}]_n $\end{document}. NMR and infrared spectra indicate that the chain is terminated with propylene unit, forming a structure of ?C(CH3)? CH2? C(CH3)?CH2 involving a vinylene group.  相似文献   

17.
Extensive studies on ThO2(am) solubility were carried out as functions of a wide range of isosaccharinate concentrations (0.0002 to 0.2 mol⋅kg−1) at fixed pH values of about 6 and 12, and varying pH (ranging from 4.5 to 12) at fixed aqueous isosaccharinate concentrations of 0.008 mol⋅kg−1 or 0.08 mol⋅kg−1, to determine the aqueous complexes of isosaccharinate with Th(IV). The samples were equilibrated over periods ranging up to 69 days, and the data showed that, in most cases, steady-state concentrations were reached in <15 days. The data were interpreted using the SIT model, and required the inclusion of mixed hydroxy-ISA complexes of Th(IV) [Th(OH)ISA2+, Th(OH)3(ISA)2-_{2}^{-}, and Th(OH)4(ISA)22-]_{2}^{2-}] with log 10 K 0=12.5±0.5,4.4±0.5 and −3.2±0.5 for the reactions:
lThO2(am)+3H++ISA-\rightleftarrows Th(OH)ISA2++H2OThO2(am)+H++2ISA-+H2O\rightleftarrows Th(OH)3(ISA)2-\begin{array}{l}\mathrm{ThO}_{2}(\mathrm{am})+3\mathrm{H}^{+}+\mathrm{ISA}^{-}\rightleftarrows \mathrm{Th}(\mathrm{OH})\mathrm{ISA}^{2+}+\mathrm{H}_{2}\mathrm{O}\\[3pt]\mathrm{ThO}_{2}(\mathrm{am})+\mathrm{H}^{+}+2\mathrm{ISA}^{-}+\mathrm{H}_{2}\mathrm{O}\rightleftarrows \mathrm{Th}(\mathrm{OH})_{3}(\mathrm{ISA})_{2}^{-}\end{array}  相似文献   

18.
The solubility of siderite (FeCO3) at 25°C under constant CO2 partial pressure [p(CO2)] was determined in NaCl solutions as a function of ionic strength. The dissolution of FeCO3(s) for the reaction
has been determined as a function of pH = – log[H+]. From these values we have determined the equilibrium constant for the stoichiometric solubility to FeCO3(s) in NaCl
These values have been fitted to the equation
with a standard error of s = 0.15. The extrapolated value of log(K o sp) – 10.9 in water is in good agreement with data in the literature (– 10.8 to – 11.2) determined in solutions of different composition and ionic strength.The measured values of the activity coefficient, T(Fe2+) T(CO3 2–), have been used to estimate the stability constant for the formation of the FeCO3 ion pair, K*(FeCO3). The values of K*(FeCO3) have been fitted to the equation (s = 0.09)
The value of log[K o(FeCO3)] in water found in this study (6.3 ± 0.2) is slightly higher than the value found from extrapolations in 1.0 m NaClO4 solutions (5.9 ± 0.2). These differences are related to the model used to determine the activity coefficients of the Fe(II) and carbonate species in the two solutions.  相似文献   

19.
Equations are derived, in a general form, and valid in the range 0.5??C??3 mol?L?1, for the calculation of the total potential anomalies (??E H) for emf cells where the formation of iso-polymolybdates takes place, according to the equilibria: $$p \mathrm{H}^{+} (h) + q \mathrm{MoO}_{4}^{2 -} (b)\rightleftharpoons [(\mathrm{H}^{+})_{p}(\mathrm{MoO}_{4}^{2-})_{q} ] ^{p - 2q} (cpx _{pq})$$ by measuring [H+]=h, in NaClO4 ionic medium (A+, Y?) at [Na+]=3 mol?L?1. The total cell emf (E H), can be defined as: $$E_{\mathrm{H}} = E_{\mathrm{0H}} + g \log_{10} h + g\log_{10} f_{\mathrm{HTS}2} +E_{\mathrm{D}} + E_{\mathrm{D}f}$$ where: E 0H is an experimental constant, E D+E Df =E J, the classical liquid junction potential, and glog?10 f JTS2+E D+E Df =??E H. Here, $\mathrm{MoO}_{4}^{2 -}$ is the central ??metal ion??, E D is the ideal diffusion potential (Hendersson equation), E Df is the contribution of the activity coefficients to E D. f HTS2 denotes the activity coefficient of the H+ ions in the terminal solution TS2. The investigations of this system made by Sasaki and Sillén are critically analyzed. Some emf cells are supposed for the determination of the interaction coefficients involved. All calculations are valid at 25?°C. The revised equilibrium constants are presented in Table 14.  相似文献   

20.
Conclusions Three-component complex cobalt-containing catalysts are proposed, which are activated by PPh3 or by an excess of acetylenic hydrocarbons, with which cyclocodimerization of norbornadiene or spiro{bicyclo[2.2.1]hepta-2,5-diene-7,1-cyclopropane} with diacetylenes can be carried out leading to derivatives of the bitetracyclo[4.3.0.02,4.03,7]nonane series in high yields.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 5, pp. 1061–1067, May, 1987.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号