首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article a method is presented, which can be used for the numerical treatment of integral equations. Considered is the Fredholm integral equation of second kind with continuous kernel, since this type of integral equation appears in many applications, for example when treating potential problems with integral equation methods.The method is based on the approximation of the integral operator by quasi-interpolating the density function using Gaussian kernels. We show that the approximation of the integral equation, gained with this method, for an appropriate choice of a certain parameter leads to the same numerical results as Nyström’s method with the trapezoidal rule. For this, a convergence analysis is carried out.  相似文献   

2.
We provide sufficient convergence conditions for a certain class of inexact Newton-like methods to a locally unique solution of a nonlinear equation in a Banach space. The equation contains a nondifferentiable term and at each step we use the inverse of the same linear operator. We use Ptak-like conditions that are weaker than earlier ones. Our results apply whenever earlier ones do but not vice versa. A semilocal convergence result is also given based on the contraction mapping principle. Finally, our results apply to solve a nonlinear integral equation of Uryson type appearing in elasticity theory that cannot be solved with existing methods.  相似文献   

3.
Summary In this paper new multilevel algorithms are proposed for the numerical solution of first kind operator equations. Convergence estimates are established for multilevel algorithms applied to Tikhonov type regularization methods. Our theory relates the convergence rate of these algorithms to the minimal eigenvalue of the discrete version of the operator and the regularization parameter. The algorithms and analysis are presented in an abstract setting that can be applied to first kind integral equations.Dedicated to Jim Bramble on the occasion of his sixtieth birthday  相似文献   

4.
The Peaceman-Rachford alternating direction method is used to solve a system of difference equations approximating the Poisson equation in a rectangular domain with integral conditions with fourth-order accuracy. The convergence of the iterative method is studied on the basis of an analysis of the spectrum structure of a one-dimensional difference operator with a nonlocal condition. We study the dependence of the spectrum on the weight functions occurring in the integral conditions. In particular, we discuss the presence of complex eigenvalues with negative real parts in the spectrum of the difference operator with a nonlocal condition. The results of a numerical experiment are presented.  相似文献   

5.
In the paper we carry out a complete analysis of several efficientnumerical methods for the solution of boundary integral equationsdefined on a non-smooth boundary. In particular the solutionof the Helmholtz equation in the exterior of a closed wedgeis studied. The analytical behaviour of the solution of theresulting boundary integral equation (with a non-compact operator)near the wedge is investigated. Numerical analysis of the collocationand iterated collocation method for the problem is presented.Graded meshes are used to reflect the ‘singular’behaviour of the analytical solution, as well as the degreeof the polynomial approximant, in order to yield results with‘optimal convergence rates’. Finally the convergenceanalysis of some modified two-grid iterative methods for thefast solution of the resulting linear systems is given and numericalresults are presented which agree with the theoretical predictions.  相似文献   

6.
We present a new approach to study the convergence of Newton's method in Banach spaces, which relax the conditions appearing in the usual studies. The approach is based on the bound required for the second derivative of the operator involved. An application to a nonlinear integral equation is presented.  相似文献   

7.
MULTILEVEL AUGMENTATION METHODS FOR SOLVING OPERATOR EQUATIONS   总被引:5,自引:0,他引:5  
We introduce multilevel augmentation methods for solving operator equations based on direct sum decompositions of the range space of the operator and the solution space of the operator equation and a matrix splitting scheme. We establish a general setting for the analysis of these methods, showing that the methods yield approximate solutions of the same convergence order as the best approximation from the subspace. These augmentation methods allow us to develop fast, accurate and stable nonconventional numerical algorithms for solving operator equations. In particular, for second kind equations, special splitting techniques are proposed to develop such algorithms. These algorithms are then applied to solve the linear systems resulting from matrix compression schemes using wavelet-like functions for solving Fredholm integral equations of the second kind. For this special case, a complete analysis for computational complexity and convergence order is presented. Numerical examples are included to demonstra  相似文献   

8.
We are concerned with the numerical treatment of boundary integral equations by the adaptive wavelet boundary element method. In particular, we consider the second kind Fredholm integral equation for the double layer potential operator on patchwise smooth manifolds contained in ?3. The corresponding operator equations are treated by adaptive implementations that are in complete accordance with the underlying theory. The numerical experiments demonstrate that adaptive methods really pay off in this setting. The observed convergence rates fit together very well with the theoretical predictions based on the Besov regularity of the exact solution.  相似文献   

9.
The pseudo‐spectral Legendre–Galerkin method (PS‐LGM) is applied to solve a nonlinear partial integro‐differential equation arising in population dynamics. This equation is a competition model in which similar individuals are competing for the same resources. It is a kind of reaction–diffusion equation with integral term corresponding to nonlocal consumption of resources. The proposed method is based on the Legendre–Galerkin formulation for the linear terms and interpolation operator at the Chebyshev–Gauss–Lobatto (CGL) points for the nonlinear terms. Also, the integral term, which is a kind of convolution, is directly computed by a fast and accurate method based on CGL interpolation operator, and thus, the use of any quadrature formula in its computation is avoided. The main difference of the PS‐LGM presented in the current paper with the classic LGM is in treating the nonlinear terms and imposing boundary conditions. Indeed, in the PS‐LGM, the nonlinear terms are efficiently handled using the CGL points, and also the boundary conditions are imposed strongly as collocation methods. Combination of the PS‐LGM with a semi‐implicit time integration method such as second‐order backward differentiation formula and Adams‐Bashforth method leads to reducing the complexity of computations and obtaining a linear algebraic system of equations with banded coefficient matrix. The desired equation is considered on one and two‐dimensional spatial domains. Efficiency, accuracy, and convergence of the proposed method are demonstrated numerically in both cases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The inverse problem of determining the growth rate coefficient of biological objects from additional information on their time-dependent density is considered. Two nonlinear integral equations are derived for the unknown coefficient, which is determined on part of its domain from one equation and on the remaining part from the other equation. The nonlinear integral equations are solved by iterative methods. The convergence conditions for the iterative methods are formulated, and results of numerical experiments are presented.  相似文献   

11.
We show that generalized approximation spaces can be used to prove stability and convergence of projection methods for certain types of operator equations in which unbounded operators occur. Besides the convergence, we also get orders of convergence by this approach, even in case of non-uniformly bounded projections. We give an example in which weighted uniform convergence of the collocation method for an easy Cauchy singular integral equation is studied.  相似文献   

12.
We provide the numerical analysis of the combination of finite elements and Dirichlet-to-Neumann mappings (based on boundary integral operators) for a class of nonlinear exterior transmission problems whose weak formulations reduce to Lipschitz-continuous and strongly monotone operator equations. As a model we consider a nonlinear second order elliptic equation in divergence form in a bounded inner region of the plane, coupled with the Laplace equation in the corresponding unbounded exterior part. A discrete Galerkin scheme is presented by using linear finite elements on a triangulation of the domain, and then applying numerical quadrature and analytical formulae to evaluate all the linear, bilinear and semilinear forms involved. We prove the unique solvability of the discrete equations, and show the strong convergence of the approximate solutions. Furthermore, assuming additional regularity on the solution of the continuous operator equation, the asymptotic rate of convergence O(h) is also derived. Finally, numerical experiments are presented, which confirm the convergence results.  相似文献   

13.
The semilocal convergence for a modified multi-point Jarratt method for solving non-linear equations in Banach spaces is established with the third-order Fréchet derivative of the operator under a general continuity condition. The recurrence relations are derived for the method, and from this, we prove an existence-uniqueness theorem, and give a priori error bounds. The R-order of the method is also analyzed with the third-order Fréchet derivative of the operator under different continuity conditions. Numerical application on non-linear integral equation of the mixed type is given to show our approach.  相似文献   

14.
In this paper, we apply the Jacobi collocation method for solving nonlinear fractional differential equations with integral boundary conditions. Due to existence of integral boundary conditions, after reformulation of this equation in the integral form, the method is proposed for solving the obtained integral equation. Also, the convergence and stability analysis of the proposed method are studied in two main theorems. Furthermore, the optimum degree of convergence in the L2 norm is obtained for this method. Furthermore, some numerical examples are presented in order to illustrate the performance of the presented method. Finally, an application of the model in control theory is introduced. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
We analyze two collocation schemes for the Helmholtz equation with depth‐dependent sonic wave velocity, modeling time‐harmonic acoustic wave propagation in a three‐dimensional inhomogeneous ocean of finite height. Both discretization schemes are derived from a periodized version of the Lippmann‐Schwinger integral equation that equivalently describes the sound wave. The eigenfunctions of the corresponding periodized integral operator consist of trigonometric polynomials in the horizontal variables and eigenfunctions to some Sturm‐Liouville operator linked to the background profile of the sonic wave velocity in the vertical variable. Applying an interpolation projection onto a space spanned by finitely many of these eigenfunctions to either the unknown periodized wave field or the integral operator yields two different collocation schemes. A convergence estimate of Sloan [J. Approx. Theory, 39:97–117, 1983] on non‐polynomial interpolation allows to show converge of both schemes, together with algebraic convergence rates depending on the smoothness of the inhomogeneity and the source. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
We solve a convection-diffusion-sorption (reaction) system on a bounded domain with dominant convection using an operator splitting method. The model arises in contaminant transport in groundwater induced by a dual-well, or in controlled laboratory experiments. The operator splitting transforms the original problem to three subproblems: nonlinear convection, nonlinear diffusion, and a reaction problem, each with its own boundary conditions. The transport equation is solved by a Riemann solver, the diffusion one by a finite volume method, and the reaction equation by an approximation of an integral equation. This approach has proved to be very successful in solving the problem, but the convergence properties where not fully known. We show how the boundary conditions must be taken into account, and prove convergence in L1,loc of the fully discrete splitting procedure to the very weak solution of the original system based on compactness arguments via total variation estimates. Generally, this is the best convergence obtained for this type of approximation. The derivation indicates limitations of the approach, being able to consider only some types of boundary conditions. A sample numerical experiment of a problem with an analytical solution is given, showing the stated efficiency of the method.  相似文献   

17.
Lomov  I. S. 《Doklady Mathematics》2018,98(1):386-390

For a second-order ordinary differential operator on an interval of the real line with integral boundary conditions, conditions for the unconditional basis property and uniform convergence of the expansion of a function in terms of the eigen- and associated functions of this operator are established. The convergence and equiconvergence rates of this expansion and the equiconvergence rate of the trigonometric Fourier expansion of this function are estimated. The uniform convergence of its expansion in the adjoint system is studied.

  相似文献   

18.
Summary In this paper we apply the coupling of boundary integral and finite element methods to solve a nonlinear exterior Dirichlet problem in the plane. Specifically, the boundary value problem consists of a nonlinear second order elliptic equation in divergence form in a bounded inner region, and the Laplace equation in the corresponding unbounded exterior region, in addition to appropriate boundary and transmission conditions. The main feature of the coupling method utilized here consists in the reduction of the nonlinear exterior boundary value problem to an equivalent monotone operator equation. We provide sufficient conditions for the coefficients of the nonlinear elliptic equation from which existence, uniqueness and approximation results are established. Then, we consider the case where the corresponding operator is strongly monotone and Lipschitz-continuous, and derive asymptotic error estimates for a boundary-finite element solution. We prove the unique solvability of the discrete operator equations, and based on a Strang type abstract error estimate, we show the strong convergence of the approximated solutions. Moreover, under additional regularity assumptions on the solution of the continous operator equation, the asymptotic rate of convergenceO (h) is obtained.The first author's research was partly supported by the U.S. Army Research Office through the Mathematical Science Institute of Cornell University, by the Universidad de Concepción through the Facultad de Ciencias, Dirección de Investigación and Vicerretoria, and by FONDECYT-Chile through Project 91-386.  相似文献   

19.
A new boundary integral operator is introduced for the solution of the soundsoft acoustic scattering problem, i.e., for the exterior problem for the Helmholtz equation with Dirichlet boundary conditions. We prove that this integral operator is coercive in L2(Γ) (where Γ is the surface of the scatterer) for all Lipschitz star‐shaped domains. Moreover, the coercivity is uniform in the wavenumber k = ω/c, where ω is the frequency and c is the speed of sound. The new boundary integral operator, which we call the “star‐combined” potential operator, is a slight modification of the standard combined potential operator, and is shown to be as easy to implement as the standard one. Additionally, to the authors' knowledge, it is the only second‐kind integral operator for which convergence of the Galerkin method in L2(Γ) is proved without smoothness assumptions on Γ except that it is Lipschitz. The coercivity of the star‐combined operator implies frequency‐explicit error bounds for the Galerkin method for any approximation space. In particular, these error estimates apply to several hybrid asymptoticnumerical methods developed recently that provide robust approximations in the high‐frequency case. The proof of coercivity of the star‐combined operator critically relies on an identity first introduced by Morawetz and Ludwig in 1968, supplemented further by more recent harmonic analysis techniques for Lipschitz domains. © 2011 Wiley Periodicals, Inc.  相似文献   

20.
We consider a scalar boundary integral formulation for the biharmonic equation based on the Almansi representation. This formulation was derived by the first author in an earlier paper. Our aim here is to prove the ellipticity of the integral operator and hence establish convergence of and error bounds for Galerkin boundary element methods. The theory applies both in two and three dimensions, but only for star-shaped domains. Numerical results in two dimensions confirm our analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号