首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Nitrous acid (HONO) has been observed to build in the atmosphere of cities during the nighttime hours and it is suspected that photolysis of HONO may be a significant source of HO radicals early in the day. The sources of HONO are poorly understood, making it difficult to account for nighttime HONO formation in photochemical modeling studies of urban atmospheres, such as modeling of urban O3 formation. This paper reviews the available information on measurements of HONO in the atmosphere and suggest mechanisms of HONO formation. The most extensive atmospheric measurement databases are used to investigate the relations between HONO and potential precursors. Based on these analyses, the nighttime HONO concentrations are found to correlate best with the product of NO, NO2 and H2O concentrations, or possibly the NO, NO2, H2O, and aerosol concentrations. A new mechanism for nighttime HONO formation is proposed that is consistent with this precursor relationship, namely, reaction of N2O3 with moist aerosols (or other surfaces) to form two HONO molecules. Theoretical considerations of the equilibrium constant for N2O3 formation and the theory of gas-particle reactions show that the proposed reaction is a plausible candidate for HONO formation in urban atmospheres. For photochemical modeling purposes, a relation is derived in terms of gas phase species only (i.e., excluding the aerosol concentration): NO + NO2 + H2O → 2 HONO with a rate constant of 1.68 x 10-17 e6348/T (ppm-2 min-1). This rate constant is based on an analysis of ambient measurements of HONO, NO, NO2 and H2O, with a temperature dependence from the equilibrium constant for formation of N2O3. Photochemical grid modeling is used to investigate the effects of this relation on simulated HONO and O3 concentrations in Los Angeles, and the results are compared to two alternative sources of nighttime HONO that have been used by modelers. Modeling results show that the proposed relation results in HONO concentrations consistent with ambient measurements. Furthermore, the relation represents a conservative modeling approach because HONO production is effectively confined to the model surface layers in the nighttime hours, the time and place for which ambient data exist to show that HONO formation occurs. The empirical relation derived here should provide a useful tool for modelers until such time as knowledge of the HONO forming mechanisms has improved and more quantitative relations can be derived.  相似文献   

2.
The surface reaction of NO2 and H2O vapor to emit HONO into the gas phase was studied in the evacuable and bakeable photochemical chamber under the irradiation of UV-visible light (? 290 nm). Kinetic analysis of the NO, NO2, and HONO with the aid of computer modeling strongly suggested that the formation of HONO by the surface reaction is photoenhanced. When a linear regression was assumed, the photoenhancement factor defined by {(k21/k21) ? 1} was expressed as (6.8 ± 2.5)k1 under our experimental conditions, where k1 is the primary photolysis rate of NO2, and k21, k21 are the second-order-equivalent rate constants of the HONO formation reaction in dark and under irradiation, respectively. The discussion was made that this photocatalitic enhancement of HONO formation would explain the nature of the extra OH radical flux in the smog chamber experiments, which has been discussed as “unknown radical source” and has still been unexplained by the surface dark reaction of NO2 and H2O to emit HONO.  相似文献   

3.
The dark reaction of NOx and H2O vapor in 1 atm of air was studied for the purpose of elucidating the recently discussed unknown radical source in smog chambers. Nitrous acid and nitric oxide were found to be formed by the reaction of NO2 and H2O in an evacuable and bakable smog chamber. No nitric acid was observed in the gas phase. The reaction is not stoichiometric and is thought to be a heterogeneous wall reaction. The reaction rate is first order with respect to NO2 and H2O, and the concentrations of HONO and NO initially increase linearly with time. The same reaction proceeds with a different rate constant in a quartz cell, and the reaction of NO2 and H218O gave H18ONO exclusively. Taking into consideration the heterogeneous reaction of NO2 and H2O, the upper limit of the rate constant of the third-order reaction NO + NO2 + H2O → 2HONO was deduced to be (3.0 ± 1.4) × 10?10 ppm?2-min?1, which is one order of magnitude smaller than the previously reported value. Nitrous acid formed by the heterogeneous dark reaction of NO2 and H2O should contribute significantly to both an initially present HONO and a continuous supply of OH radicals by photolysis in smog chamber experiments.  相似文献   

4.
Photochemical reactions of trace compounds in snow have important implications for the composition of the atmospheric boundary layer in snow-covered regions and for the interpretation of concentration profiles in snow and ice regarding the composition of the past atmosphere. One of the prominent reactions is the photolysis of nitrate, which leads to the formation of OH radicals in the snow and to the release of reactive nitrogen compounds, like nitrogen oxides (NO and NO2) and nitrous acid (HONO) to the atmosphere. We performed photolysis experiments using artificial snow, containing variable initial concentrations of nitrate and nitrite, to investigate the reaction mechanism responsible for the formation of the reactive nitrogen compounds. Increasing the initial nitrite concentrations resulted in the formation of significant amounts of nitrate in the snow. A possible precursor of nitrate is NO2, which can be transformed into nitrate either by the attack of a hydroxy radical or the hydrolysis of the dimer (N2O4). A mechanism for the transformation of the nitrogen-containing compounds in snow was developed, assuming that all reactions took place in a quasi-liquid layer (QLL) at the surface of the ice crystals. The unknown photolysis rates of nitrate and nitrite and the rates of NO and NO2 transfer from the snow to the gas phase, respectively, were adjusted to give an optimum fit of the calculated time series of nitrate, nitrite, and gas phase NOx with respect to the experimental data. Best agreement was obtained with a ∼25 times faster photolysis rate of nitrite compared to nitrate. The formation of NO2 is probably the dominant channel for the nitrate photolysis. We used the reaction mechanism further to investigate the release of NOx and HONO under natural conditions. We found that NOx emissions are by far dominated by the release of NO2. The release of HONO to the gas phase depends on the pH of the snow and the HONO transfer rate to the gas phase. However, due to the small amounts of nitrite produced under natural conditions, the formation of HONO in the QLL is probably negligible. We suggest that observed emissions of HONO from the surface snow are dominated by the heterogeneous formation of HONO in the firn air. The reaction of NO2 on the surfaces of the ice crystals is the most likely HONO source to the gas phase.  相似文献   

5.
The kinetics and mechanisms of the HCO reactions with HONO and HNOH have been studied at the G2M level of theory based on the geometric parameters optimized at BH&HLYP/6‐311G(d,p). The rate constants in the temperature range 200–3000 K at different pressures have been predicted by microcanonical RRKM and/or variational transition state theory calculations with Eckart tunneling corrections. For the HCO + HONO reaction, hydrogen abstraction from trans‐HONO and cis‐HONO by HCO produces H2CO + NO2, with the latter being dominant. Two other channels involving cis‐HONO by the association/decomposition mechanism via the HC(O)N(O)OH intermediate, which could fragment to give H2O + CO + NO at high temperatures, were also found to be important. For the HCO + HNOH reaction, three reaction channels were identified: one association reaction giving a stable intermediate, HC(O)N(H)OH (LM2), and two hydrogen abstraction channels producing H2CO and H2NOH. The dominant products were predicted to be the formation of LM2 at low temperatures and H2NOH + CO at middle and high temperatures. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 178–187 2004  相似文献   

6.
Flow reactor experiments were performed to study moist CO oxidation in the presence of trace quantities of NO (0–400 ppm) and SO2 (0–1300 ppm) at pressures and temperatures ranging from 0.5–10.0 atm and 950–1040 K, respectively. Reaction profile measurements of CO, CO2, O2, NO, NO2, SO2, and temperature were used to further develop and validate a detailed chemical kinetic reaction mechanism in a manner consistent with previous studies of the CO/H2/O2/NOX and CO/H2O/N2O systems. In particular, the experimental data indicate that the spin‐forbidden dissociation‐recombination reaction between SO2 and O‐atoms is in the fall‐off regime at pressures above 1 atm. The inclusion of a pressure‐dependent rate constant for this reaction, using a high‐pressure limit determined from modeling the consumption of SO2 in a N2O/SO2/N2 mixture at 10.0 atm and 1000 K, brings model predictions into much better agreement with experimentally measured CO profiles over the entire pressure range. Kinetic coupling of NOX and SOX chemistry via the radical pool significantly reduces the ability of SO2 to inhibit oxidative processes. Measurements of SO2 indicate fractional conversions of SO2 to SO3 on the order of a few percent, in good agreement with previous measurements at atmospheric pressure. Modeling results suggest that, at low pressures, SO3 formation occurs primarily through SO2 + O(+M) = SO3(+M), but at higher pressures where the fractional conversion of NO to NO2 increases, SO3 formation via SO2 + NO2 = SO3 + NO becomes important. For the conditions explored in this study, the primary consumption pathways for SO3 appear to be SO3 + HO2 = HOSO2 + O2 and SO3 + H = SO2 + OH. Further study of these reactions would increase the confidence with which model predictions of SO3 can be viewed. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 317–339, 2000  相似文献   

7.
The reaction of N-nitro-O-(4-nitrophenyl)hydroxylamine (1) with conc. H2SO4 affords 4-nitropyrocatechol and that with conc. sulfonic acids (RSO3H where R = Me, CF3) affords 2-hydroxy-5-nitrophenyl-R-sulfonates in yields of 80?C85%. These reactions are assumed to proceed through an intermediate (phenoxy)oxodiazonium ion [NO2C6H4O-N=N=O]+, which eliminates the N2O molecule to form the aryloxenium ion [NO2C6H4O]+. The latter reacts with acid anions at the ortho-carbon atom of the phenyl ring. The thermodynamical parameters of the elementary reactions resulting in the formation of the (phenoxy)oxodiazonium ion [NO2C6H4O-N=N=O]+ and aryloxenium ion [NO2C6H4O]+ were calculated in the B3LYP/6?311+G(d) study of the combined molecular system (nitrohydroxylamine 1 + [H3SO4]+). The reaction of nitrohydroxylamine 1 with aqueous solutions of strong acids (??70% H2SO4, CF3SO3H) affords mainly 4-nitrophenol. It appears that the mechanism of this reaction does not involve the formation of the aryloxenium ion.  相似文献   

8.
The formation of nitrous acid (HONO) in the dark from initial concentrations of NO2 of 0.1–20 ppm in air, and the concurrent disappearance of NO2, were monitored quantitatively by UV differential optical absorption spectroscopy in two different environmental chambers of ca.4300- and 5800-L volume (both with surface/volume ratios of 3.4 m?1). In these environmental chambers the initial HONO formation rate was first order in the NO2 concentration and increased with the water vapor concentration. However, the HONO formation rate was independent of the NO concentration and relatively insensitive to temperature. The initial pseudo-first-order consumption rate of NO2 was (2.8 ± 1.2) × 10?4 min?1 in the 5800-L Teflon-coated evacuable chamber and (1.6 ± 0.5) × 10?4 min?1 in a 4300-L all-Teflon reaction chamber at ca.300 K and ca.50% RH. The initial HONO yields were ca.40–50% of the NO2 reacted in the evacuable chamber and ca.10–30% in the all-Teflon chamber. Nitric oxide formation was observed during the later stages of the reaction in the evacuable chamber, but ca.50% of the nitrogen could not be accounted for, and gas phase HNO3 was not detected. The implications of these data concerning radical sources in environmental chamber irradiations of NOx? organic-air mixtures, and of HONO formation in polluted atmospheres, are discussed.  相似文献   

9.
FT-IR study of NO and C3H6 adsorption, co-adsorption and interaction in the presence of oxygen were performed in order to estimate the catalytic behaviour of Au and V-containing MCM-41 materials in NO-SCR with propene. MCM-41 were modified with gold, vanadium and niobium by their introduction during the synthesis (co-precipitation) carried out with the use of HCl or H2SO4 as pH adjustment agent. The texture/structure properties of the prepared samples were investigated by N2 adsorption, XRD, XPS and TEM techniques. It has been found that the nature of acid used for the pH adjustment during the synthesis determines the gold particles size and dispersion and influences the interaction of NO+O2+C3H6 with the catalyst surfaces. In both types of AuVMCM-41 catalysts, the SCR reaction route occurs via NO2 formation. In the case of AuVMCM-41(HCl) and AuVNbMCM-41(HCl) nitrites are formed and stored, and upon heating NO2 is released. These kinds of nitrites are not formed on AuVMCM-41(H2SO4) and AuVNbMCM-41(H2SO4). Instead of that NO2 is chemisorbed on metallic gold, niobium and vanadium species and reacts with propene and/or oxygenates.  相似文献   

10.
The photolysis of nitrous acid (HONO) is an important reaction of atmospheric chemistry due to the fact that it can be the source of OH radical in the troposphere. Despite its role as a radical precursor, the chemical mechanisms leading to HONO formation are not well understood. It is commonly assumed that HONO formation is due to both homogeneous and heterogeneous processes involving NOx (mixture of NO and NO2) in which the kinetic and mechanistic details are still under investigation. In this discussion, we would like to highlight the formation of HONO from NO2 and nitric acid (HNO3) in the presence of organic particulate. We understood that in the real case, many parameters can influence the reaction mechanism; however, this is just an effort to have a better understanding of the study of HONO formation in the atmospheric process.  相似文献   

11.
The effect of O2 and H2O vapor on the Nitric oxide (NO) removal rate, the NO2 generation rate and the discharge characteristics were investigated using the dielectric barrier discharge (DBD) reactor at 1 atm pressure and at room temperature (20°). The results showed that the O2 present in the flue gas always hampered the removal of NO and the generation of N2O, but that the O2 could enhance the generation of NO2 in the NO/N2/O2 mixtures. Furthermore, with the increase of oxygen, the average discharge current gradually decreases in the reactor. The H2O present in N2/NO hindered the removal of NO and the generation of NO2 but had no impact on the average discharge current in the reactor in the NO/N2/H2O mixtures in which the HNO2 and HNO3 was detected. The energy efficiency of the DBD used to remove the NO from the flue gas was also estimated.  相似文献   

12.
TNT高温热解及含碳团簇形成的反应分子动力学模拟   总被引:1,自引:0,他引:1  
ReaxFF-MD模拟三硝基甲苯(TNT)高温热解显示增加了伦敦耗散力项(Elg)的ReaxFF/lg 势函数在含能材料平衡密度计算方面具有优越性. 产物识别分析得出TNT热解的主要产物为NO2、NO、H2O、N2、CO2、CO、OH以及HONO,且最终产物为H2O、N2和CO2. 使用ReaxFF势函数模拟同样过程进行比较性分析显示,在主要产物和最终产物方面与ReaxFF/lg 作用结果具有一致性,但在化学反应动力学方面表现出一些差异. ortho-NO2键断裂和C―NO2→C―ONO重排布-断裂形成NO2和NO是TNT热解的主要初级反应,且前者产生速率大于后者,NO2和NO形成后很快参与次级反应并最终形成N2. 高温热解中形成OH等小分子会促进H2O的形成. 环上基团相互反应或直接脱落后,主环间C―C键才发生断裂,但温度升高会加快主环断裂,并进一步分解形成CO2,这也是高温条件下CO2分布产生波动的一个重要原因. 并且当晶胞中的TNT分子几乎完全分解时,系统的势能开始明显衰减. 与温度相比,密度对热解中最大含碳团簇形成的影响更明显. 并且,模拟结果显示,在TNT完全分解前已经出现含碳中间体的聚合现象. 此项工作表明使用ReaxFF/lg 反应力场研究TNT高温热解可以提供具体的动力学和化学方面的信息,并有助于理解含能材料的爆轰问题并可进行安全评估.  相似文献   

13.
用T-jump/FTIR研究MnCP、NiCP和PbCP的快速热分解(英)   总被引:1,自引:0,他引:1  
0IntroductionCarbohydrazideisahydrazinederivativewithwhitecrystalofstrongreducingbehaviors.Becauseithasmanycoordinationatoms(fournitrogenatomsandoneoxygenatom),carbohydrazidecan,therefore,beusedasmultidentateligand.Itscoordinationcom鄄poundiswidelyusedint…  相似文献   

14.
A reaction of N-nitro-O-(4-nitrophenyl)hydroxylamine with nitriles RCN (R = Me, Et, Ph) in the presence of P4O10 in excess amount at 0 °C leads to the formation of 2-R-5-nitro-1,3-benzoxazoles. The reaction presumably takes place through the intermediate (phenoxy)oxodiazonium ion [NO2C6H4O-N=N=O]+, which eliminates an N2O molecule to form the aryloxenium ion [NO2C6H4O]+. The latter reacts with nitriles RCN at the ortho-carbon atom of the phenyl ring giving 2-R-5-nitro-1,3-benzoxazoles.  相似文献   

15.
The reaction of CH2O with NO2 has been studied with a shock tube equipped with two stabilized ew CO lasers. The production of CO, NO, and H2O has been monitored with the CO lasers in the temperature range of 1140–1650 K using three different Ar-diluted CH2O-NO2 mixtures. Kinetic modeling and sensitivity analysis of the observed CO, NO, and H2O production profiles over the entire range of reaction conditions employed indicate that the bimolecular metathetical reaction, NO2 + CH2O → HONO + CHO (1) affects most strongly the yields of these products. Combination of the kinetically modeled values of ??1 with those obtained recently from a low temperature pyrolytic study, ref. [8], leads to for the broad temperature range of 300–2000 K.  相似文献   

16.
The reaction of phenols with nitrite (nitrous acid HONO, or its conjugated base, NO2?) is of importance in stomach fluids (low pH) and in atmospheric hydrometeors (mild acid and basic pH). The initial reaction associated with the oxidation/nitration of 4‐substitued phenols promoted by HONO/NO2 depends on the pH of the solution. At low pH, the initial step involves the reaction between HONO and phenol, whereas at basic conditions this involves an electron transfer from the phenoxy anion to nitrogen dioxide (NO2) producing the nitrite anion. The rate of both processes is determined by the donor capacity of the substituent at the 4‐position of the phenol, and the data obtained at pH 2.3 follow a linear Hammett‐type correlation with a slope equal to –1.23. The partition of the gaseous intermediates (NO and NO2) makes the rate of HONO‐mediated oxidation dependent on their gas–liquid distribution. At low pH, the main process is phenol oxidation, even in oxygen‐free conditions, and the presence of any 4‐substituted phenol decreases the rate of HONO auto‐oxidation.  相似文献   

17.
During the reduction of NO2 by C3H6 in O2 over alumina-supported Au, Rh and Pt it was found that three parallel reactions take place,i.e., reduction of NO2 to N2 and N2O, partial decomposition of NO2 to NO and oxidation of C3H6 to CO and CO2. In the absence of C3H6, the NO2→NO+O2 reaction reaches a fast equilibrium on Rh and Pt but not on Au and γ-Al2O3. Addition of C3H6 to the NO2+O2 mixture leads to the formation of NO above equilibrium conversion levels.  相似文献   

18.
We have discovered, by high‐level quantum‐chemical calculations, a new and predominant isomerization mechanism for N2O4 → ONONO2 via a roaming‐like transition state occurring unimolecularly or bimolecularly during collision with H2O. The new mechanism allows N2O4 to react with H2O with a significantly lower barrier (< 13.1 kcal/mol) than the commonly known tight transition state (∼30‐45 kcal/mol) by concurrent stretching of the N N bond and rotation of one of the NO2 groups to form trans‐ONONO2, which then undergoes a rapid metathetical reaction with H2O in the gas phase and in aqueous solution. The results have a significant implication for the hydrolysis of N2O4 in water to produce HONO and HNO3. Rate constants for the isomerization and hydrolysis reactions have been predicted for atmospheric modeling applications.  相似文献   

19.
Flow reactor experiments were performed over wide ranges of pressure (0.5–14.0 atm) and temperature (750–1100 K) to study H2/O2 and CO/H2O/O2 kinetics in the presence of trace quantities of NO and NO2. The promoting and inhibiting effects of NO reported previously at near atmospheric pressures extend throughout the range of pressures explored in the present study. At conditions where the recombination reaction H + O2 (+M) = HO2 (+M) is favored over the competing branching reaction, low concentrations of NO promote H2 and CO oxidation by converting HO2 to OH. In high concentrations, NO can also inhibit oxidative processes by catalyzing the recombination of radicals. The experimental data show that the overall effects of NO addition on fuel consumption and conversion of NO to NO2 depend strongly on pressure and stoichiometry. The addition of NO2 was also found to promote H2 and CO oxidation but only at conditions where the reacting mixture first promoted the conversion of NO2 to NO. Experimentally measured profiles of H2, CO, CO2, NO, NO2, O2, H2O, and temperature were used to constrain the development of a detailed kinetic mechanism consistent with the previously studied H2/O2, CO/H2O/O2, H2/NO2, and CO/H2O/N2O systems. Model predictions generated using the reaction mechanism presented here are in good agreement with the experimental data over the entire range of conditions explored. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 705–724, 1999  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号