首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a relative rate method, rate constants for the gas-phase reactions of 2-methyl-3-buten-2-ol (MBO) with OH radicals, ozone, NO3 radicals, and Cl atoms have been investigated using FTIR. The measured values for MBO at 298±2 K and 740±5 torr total pressure are: kOH=(3.9±1.2)×10−11 cm3 molecule−1 s−1, kO3=(8.6±2.9)×10−18 cm3 molecule−1 s−1, k=(8.6±2.9)×10−15 cm3 molecule−1 s−1, and kCl=(4.7±1.0)×10−10 cm3 molecule−1 s−1. Atmospheric lifetimes have been estimated with respect to the reactions with OH, O3, NO3, and Cl. The atmospheric relevance of this compound as a precursor for acetone is, also, briefly discussed. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet: 30: 589–594, 1998  相似文献   

2.
Rate coefficients have been measured for the reactions of Cl atoms with methanol (k1) and acetaldehyde (k2) using both absolute (laser photolysis with resonance fluorescence) and relative rate methods at 295 ± 2 K. The measured rate coefficients were (units of 10−11 cm3 molecule−1 s−1): absolute method, k1 = (5.1 ± 0.4), k2 = (7.3 ± 0.7); relative method k1 = (5.6 ± 0.6), k2 = (8.4 ± 1.0). Based on a critical evaluation of the literature data, the following rate coefficients are recommended: k1 = (5.4 ± 0.9) × 10−11 and k2 = (7.8 ± 1.3) × 10−11 cm3 molecule−1 s−1 (95% confidence limits). The results significantly improve the confidence in the database for reactions of Cl atoms with these oxygenated organics. Rate coefficients were also measured for the reactions of Cl2 with CH2OH, k5 = (2.9 ± 0.6) × 10−11 and CH3CO, k6 = (4.3 ± 1.5) × 10−11 cm3 molecule−1 s−1, by observing the regeneration of Cl atoms in the absence of O2. Based on these results and those from a previous relative rate study, the rate coefficient for CH3CO + O2 at the high pressure limit is estimated to be (5.7 ± 1.9) × 10−12 cm3 molecule−1 s−1. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 776–784, 1999  相似文献   

3.
Rate coefficients have been measured for Cl atom reactions under ambient conditions with acetone and four cyclic ketones. Cl was generated by UV photolysis of Cl2, and other species were monitored by FT‐IR spectroscopy. The measurements yield k(Cl + acetone) = (2.0 ± 0.7) × 10−12, k(Cl + cyclobutanone) = (10.1 ± 0.8) × 10−11, k(Cl + cycloheptanone) = (24.0 ± 2.3) × 10−11, k(Cl + 2‐methyl cyclopentanone) = (15.2 ± 1.2) × 10−11, and k(Cl + 2‐methyl cyclohexanone) = (11.2 ± 1.0) × 10−11 cm3 molecule−1 s−1, where the uncertainties represent 95% confidence limits. These results are discussed in the context of structure‐activity relationships. We also present a prediction for Cl + cyclopropanone based on ab initio properties of the transition state.  相似文献   

4.
The kinetics of the gas-phase reactions of OH radicals, NO3 radicals, and O3 with indan, indene, fluorene, and 9,10-dihydroanthracene have been studied at 297 ± 2 K and atmospheric pressure of air. The rate constants, or upper limits thereof, for the O3 reactions were (in cm3 molecule−1 s−1 units): indan, < 3 × 10−19; indene, (1.7 ± 0.5) × 10−16, fluorene, < 2 × 10−19; and 9,10-dihydroanthracene, (9.0 ± 2.0) × 10−19. Using a relative rate method, the rate constants for the OH radical and NO3 radical reactions, respectively, were (in cm3 molecule−1 s−1 units): indan, (1.9 ± 0.5) × 10−11 and (6.6 ± 2.0) × 10−15; indene, (7.8 ± 2.0) × 10−11 and (4.1 ± 1.5) × 10−12; fluorene, (1.6 ± 0.5) × 10−11 and (3.5 ± 1.2) × 10−14; and 9,10-dihydroanthracene, (2.3 ± 0.6) × 10−11 and (1.2 ± 0.4) × 10−12. These kinetic data were used to assess the relative contributions of the various reaction pathways. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 299–309, 1997.  相似文献   

5.
Using a relative rate method, rate constants have been measured for the gas-phase reactions of the OH radical with 1-hexanol, 1-methoxy-2-propanol, 2-butoxyethanol, 1,2-ethanediol, and 1,2-propanediol at 296±2 K, of (in units of 10−12 cm3 molecule−1 s−1): 15.8±3.5; 20.9±3.1; 29.4±4.3; 14.7±2.6; and 21.5±4.0, respectively, where the error limits include the estimated overall uncertainties in the rate constants for the reference compounds. These OH radical reaction rate constants are higher than certain of the literature values, by up to a factor of 2. Rate constants were also measured for the reactions of 1-methoxy-2-propanol and 2-butoxyethanol with NO3 radicals and O3, with respective NO3 radical and O3 reaction rate constants (in cm3 molecule−1 s−1 units) of: 1-methoxy-2-propanol, (1.7±0.7)×10−15, and <1.1×10−19; and 2-butoxyethanol, (3.0±1.2)×10−15, and <1.1×10−19. The dominant tropospheric loss process for the alcohols, glycols, and glycol ethers studied here is calculated to be by reaction with the OH radical, with lifetimes of 0.4–0.8 day for a 24 h average OH radical concentration of 1.0×106 molecule cm−3. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 533–540, 1998  相似文献   

6.
Rate coefficients for nitrate radical gas-phase reactions with prop-2-en-l-ol (allyl alcohol), but-1-en-3-ol, and 2-methylbut-3-en-2-ol have been determined. Both absolute (fast flow discharge with diode laser detection of NO3) and relative (batch reactor and FTIR spectroscopy) rate techniques were used to measure the rate coefficients. The rate coefficients at 294 K are: (1.3 ± 0.2) × 10−14, (1.2 ± 0.3) × 10 −14, and (2.1 ± 0.3) × 10−14 cm3 molecule−1 s−1 for prop-2-en-1-ol, but-1-en-3-ol, and 2-methylbut-3-en-2-ol, respectively. The activation energy for reaction of NO3 with prop-2-en-1-ol was determined to 2.8 ± 2.5 kJ mol−1 in the temperature range between 273 and 363 K. The atmospheric importance of unsaturated alcohols and structure-reactivity considerations are also discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Using relative rate methods, rate constants for the gas‐phase reactions of OH radicals and Cl atoms with di‐n‐propyl ether, di‐n‐propyl ether‐d14, di‐n‐butyl ether and di‐n‐butyl ether‐d18 have been measured at 296 ± 2 K and atmospheric pressure of air. The rate constants obtained (in cm3 molecule−1 s−1 units) were: OH radical reactions, di‐n‐propyl ether, (2.18 ± 0.17) × 10−11; di‐n‐propyl ether‐d14, (1.13 ± 0.06) × 10−11; di‐n‐butyl ether, (3.30 ± 0.25) × 10−11; and di‐n‐butyl ether‐d18, (1.49 ± 0.12) × 10−11; Cl atom reactions, di‐n‐propyl ether, (3.83 ± 0.05) × 10−10; di‐n‐propyl ether‐d14, (2.84 ± 0.31) × 10−10; di‐n‐butyl ether, (5.15 ± 0.05) × 10−10; and di‐n‐butyl ether‐d18, (4.03 ± 0.06) × 10−10. The rate constants for the di‐n‐propyl ether and di‐n‐butyl ether reactions are in agreement with literature data, and the deuterium isotope effects are consistent with H‐atom abstraction being the rate‐determining steps for both the OH radical and Cl atom reactions. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 425–431, 1999  相似文献   

8.
Rate constants have been determined for the reactions of Cl atoms with the halogenated ethers CF3CH2OCHF2, CF3CHClOCHF2, and CF3CH2OCClF2 using a relative‐rate technique. Chlorine atoms were generated by continuous photolysis of Cl2 in a mixture containing the ether and CD4. Changes in the concentrations of these two species were measured via changes in their infrared absorption spectra observed with a Fourier transform infrared (FTIR) spectrometer. Relative‐rate constants were converted to absolute values using the previously measured rate constants for the reaction, Cl + CD4 → DCl + CD3. Experiments were carried out at 295, 323, and 363 K, yielding the following Arrhenius expressions for the rate constants within this range of temperature:Cl + CF3CH2OCHF2: k = (5.15 ± 0.7) × 10−12 exp(−1830 ± 410 K/T) cm3 molecule−1 s−1 Cl + CF3CHClOCHF2: k = (1.6 ± 0.2) × 10−11 exp(−2450 ± 250 K/T) cm3 molecule−1 s−1 Cl + CF3CH2OCClF2: k = (9.6 ± 0.4) × 10−12 exp(−2390 ± 190 K/T) cm3 molecule−1 s−1 The results are compared with those obtained previously for the reactions of Cl atoms with other halogenated methyl ethyl ethers. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 165–172, 2001  相似文献   

9.
The rate constants for the gas-phase reactions between methylethylether and hydroxyl radicals (OH) and methylethylether and chlorine atoms (Cl) have been determined over the temperature range 274–345 K using a relative rate technique. In this range the rate constants vary little with temperature and average values of kMEE+OH = (6.60−2.62+3.88) × 10−12 cm3 molecule−1 s−1 and kMEE+Cl= (34.9 ± 6.7) × 10−11 cm3 molecule−1 s−1 were obtained. The atmospheric lifetimes of methylethylether have been estimated with respect to removal by OH radicals and Cl atoms to be ca. 2 days and ca. 30–40 days, respectively. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 231–236, 1997.  相似文献   

10.
11.
Long-path FTIR spectroscopy was used to study the kinetics and mechanism of the reaction of Cl atoms with CO in air. The relative rate constants at 298 K and 760 torr for the forward direction of the reaction of Cl with 13CO and the reaction of Cl13CO with O2 were k1 = (3.4 ± 0.8) × 10−14 cm3 molecule−1 s−1 and k2 = (4.3 ± 3.2) × 10−13 cm3 molecule−1 s−1, respectively (all uncertainty limits are 2σ). The rate constant for the net loss of 13CO due to reaction with Cl in 1 atm of air at 298 K was kCl+COobs = (3.0 ± 0.6) × 10−14 cm3 molecule−1 s−1. The only observed carbon-containing product of the Cl + 12CO reaction was 12CO2, with a yield of 109 ± 18%. Our results are in good agreement with extrapolations from previous studies. The reaction mechanism and the implications for laboratory studies and tropospheric chemistry are discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Using relative rate methods, rate constants have been measured for the gas-phase reactions of 3-methylfuran with NO3 radicals and O3 at 296 ± 2 K and atmospheric pressure of air. The rate constants determined were (1.31 ± 0.461) × 10−11 cm3 molecule−1 s−1 for the NO3 radical reaction and (2.05 ± 0.52) × 10−17 cm3 molecule−1 s−1 for the O3 reaction, where the indicated errors include the estimated overall uncertainties in the rate constants for the reference reactions. Based on the cyclohexanone plus cyclohexanol yield in the presence of sufficient cyclohexane to scavenge > 95% of OH radicals formed, it is estimated that the O3 reaction leads to the formation of OH radicals with a yield of 0.59, uncertain to a factor of ca. 1.5. In the troposphere, 3-methylfuran will react dominantly with the OH radical during daylight hours, and with the NO3 radical during nighttime hours for nighttime NO3 radical concentrations > 107 molecule cm −3. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Rate constants for the reactions of OH, NO3, and O3 with pinonaldehyde and the structurally related compounds 3-methylbutanal, 3-methylbutan-2-one, cyclobutyl-methylketone, and 2,2,3-trimethyl-cyclobutyl-1-ethanone have been measured at 300±5 K using on-line Fourier transform infrared spectroscopy. The rate constants obtained for the reactions with pinonaldehyde were: kOH=(9.1±1.8)×10−11 cm3 molecule−1 s−1, kNO3=(5.4±1.8)×10−14 cm3 molecule−1 s−1, and kO3=(8.9±1.4)×10−20 cm3 molecule−1 s−1. The results obtained indicate a chemical lifetime of pinonaldehyde in the troposphere of about two hours under typical daytime conditions, [OH]=1.6×106 molecule cm−3. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 527–533, 1997.  相似文献   

14.
The rate constants for the gas-phase reactions of di-tert-butyl ether (DTBE) with chlorine atoms, hydroxyl radicals, and nitrate radicals have been determined in relative rate experiments using FTIR spectroscopy. Values of k(DTBE+CI) = (1.4 ± 0.2) × 10−10,k(DTBE+OH) = (3.7 ± 0.7) × 10−12, and k(DTBE+N03) = (2.8 ± 0.9) × 10−16 cm3 molecule−1 s−1 were obtained. Tert-butyl acetate was identified as the major product of both Cl atom and OH radical initiated oxidation of DTBE in air in the presence of NOx. The molar tert-butyl acetate yield was 0.85 ± 0.11 in the Cl atom experiments and 0.84 ± 0.11 in OH radical experiments. As part of this work the rate constant for reaction of Cl atoms with tert-butyl acetate at 295 K was determined to be (1.6 ± 0.3) × 10−11 cm3 molecule−1 s−1. The stated errors are two standard deviations (2σ). © 1996 John Wiley & Sons, Inc.  相似文献   

15.
Rate coefficients for the reaction of Cl atoms with CH3Cl (k1), CH2Cl2 (k2), and CHCl3 (k3) have been determined over the temperature range 222–298 K using standard relative rate techniques. These data, when combined with evaluated data from previous studies, lead to the following Arrhenius expressions (all in units of cm3 molecule−1 s−1): k1 = (2.8 ± 0.3) × 10−11 exp(−1200 ± 150/T); k2 = (1.5 ± 0.2) × 10−11 exp(−1100 ± 150/T); k3 = (0.48 ± 0.05) × 10−11 exp(−1050 ± 150/T). Values for k1 are in substantial agreement with previous measurements. However, while the room temperature values for k2 and k3 agree with most previous data, the activation energies for these rate coefficients are substantially lower than previously recommended values. In addition, the mechanism of the oxidation of CH2Cl2 has been studied. The dominant fate of the CHCl2O radical is decomposition via Cl‐atom elimination, even at the lowest temperatures studied in this work (218 K). However, a small fraction of the CHCl2O radicals are shown to react with O2 at low temperatures. Using an estimated value for the rate coefficient of the reaction of CHCl2O with O2 (1 × 10−14 cm3 molecule−1 s−1), the decomposition rate coefficient for CHCl2O is found to be about 4 × 106 s−1 at 218 K, with the barrier to its decomposition estimated at 6 kcal/mole. As part of this work, the rate coefficient for Cl atoms with HCOCl was also been determined, k7 = 1.4 × 10−11 exp(−885/T) cm3 molecule−1 s−1, in agreement with previous determinations. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 515–524, 1999  相似文献   

16.
Absolute (flash photolysis) and relative (FTIR-smog chamber and GC) rate techniques were used to study the gas-phase reactions of Cl atoms with C2H6 (k1), C3H8 (k3), and n-C4H10 (k2). At 297 ± 1 K the results from the two relative rate techniques can be combined to give k2/k1 = (3.76 ± 0.20) and k3/k1 = (2.42 ± 0.10). Experiments performed at 298–540 K give k2/k1 = (2.0 ± 0.1)exp((183 ± 20)/T). At 296 K the reaction of Cl atoms with C3H8 produces yields of 43 ± 3% 1-propyl and 57 ± 3% 2-propyl radicals, while the reaction of Cl atoms with n-C4H10 produces 29 ± 2% 1-butyl and 71 ± 2% 2-butyl radicals. At 298 K and 10–700 torr of N2 diluent, 1- and 2-butyl radicals were found to react with Cl2 with rate coefficients which are 3.1 ± 0.2 and 2.8 ± 0.1 times greater than the corresponding reactions with O2. A flash-photolysis technique was used to measure k1 = (5.75 ± 0.45) × 10−11 and k2 = (2.15 ± 0.15) × 10−10 cm3 molecule−1 s−1 at 298 K, giving a rate coefficient ratio k2/k1 = 3.74 ± 0.40, in excellent agreement with the relative rate studies. The present results are used to put other, relative rate measurements of the reactions of chlorine atoms with alkanes on an absolute basis. It is found that the rate of hydrogen abstraction from a methyl group is not influenced by neighboring groups. The results are used to refine empirical approaches to predicting the reactivity of Cl atoms towards hydrocarbons. Finally, relative rate methods were used to measure rate coefficients at 298 K for the reaction of Cl atoms with 1- and 2-chloropropane and 1- and 2-chlorobutane of (4.8 ± 0.3) × 10−11, (2.0 ± 0.1) × 10−10, (1.1 ± 0.2) × 10−10, and (7.0 ± 0.8) × 10−11 cm3 molecule−1 s−1, respectively. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 43–55, 1997.  相似文献   

17.
The kinetics of the atmospherically important gas-phase reactions of acenaphthene and acenaphthylene with OH and NO3 radicals, O3 and N2O5 have been investigated at 296 ± 2 K. In addition, rate constants have been determined for the reactions of OH and NO3 radicals with tetralin and styrene, and for the reactions of NO3 radicals and/or N2O5 with naphthalene, 1- and 2-methylnaphthalene, 2,3-dimethylnaphthalene, toluene, toluene-α,α,α-d3 and toluene-d8. The rate constants obtained (in cm3 molecule?1 s?1 units) at 296 ± 2 K were: for the reactions of O3; acenaphthene, <5 × 10?19 and acenaphthylene, ca. 5.5 × 10?16; for the OH radical reactions (determined using a relative rate method); acenaphthene, (1.03 ± 0.13) × 10?10; acenaphthylene, (1.10 ± 0.11) × 10?10; tetralin, (3.43 ± 0.06) × 10?11 and styrene, (5.87 ± 0.15) × 10?11; for the reactions of NO3 (also determined using a relative rate method); acenaphthene, (4.6 ± 2.6) × 10?13; acenaphthylene, (5.4 ± 0.8) × 10?12; tetralin, (8.6 ± 1.3) × 10?15; styrene, (1.51 ± 0.20) × 10?13; toluene, (7.8 ± 1.5) × 10?17; toluene-α,α,α-d3, (3.8 ± 0.9) × 10?17 and toluene-d8, (3.4 ± 1.9) × 10?17. The aromatic compounds which were observed to react with N2O5 and the rate constants derived were (in cm3 molecule?1 s?1 units): acenaphthene, 5.5 × 10?17; naphthalene, 1.1 × 10?17; 1-methylnaphthalene, 2.3 × 10?17; 2-methylnaphthalene, 3.6 × 10?17 and 2,3-dimethylnaphthalene, 5.3 × 10?17. These data for naphthylene and the alkylnaphthalenes are in good agreement with our previous absolute and relative N2O5 reaction rate constants, and show that the NO3 radical reactions with aromatic compounds proceed by overall H-atom abstraction from substituent-XH bonds (where X = C or O), or by NO3 radical addition to unsaturated substituent groups while the N2O5 reactions only occur for aromatic compounds containing two or more fused six-membered aromatic rings.  相似文献   

18.
Rate constants have been measured at room temperature for the reactions of Cl atoms with formic acid and with the HOCO radical: Cl + HCOOH → HCl + HOCO (R1) Cl + HOCO → HCl + CO2 (R2) Cl atoms were generated by flash photolysis of Cl2 and the progress of reaction was followed by time‐resolved infrared absorption measurements using tunable diode lasers on the CO2 that was formed either in the pair of reactions ( R1 ) plus ( R2 ), or in reaction ( R1 ) followed by O2 + HOCO → HO2 + CO2 (R3) In a separate series of experiments, conditions were chosen so that the kinetics of CO2 formation were dominated either by the rate of reaction ( R1 ) or by that of reactions ( R1 ) and ( R2 ) combined. The results of our analysis of these experiments yielded: k1 = (1.83 ± 0.12) × 10−13 cm3 molecule−1 s−1 k2 = (4.8 ± 1.0) × 10−11 cm3 molecule−1 s−1 © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 85–91, 2000  相似文献   

19.
The reaction of Cl atoms with a series of C2–C5 unsaturated hydrocarbons has been investigated at atmospheric pressure of 760 Torr over the temperature range 283–323 K in air and N2 diluents. The decay of the hydrocarbons was followed using a gas chromatograph with a flame ionization detector (GC‐FID), and the kinetic constants were determined using a relative rate technique with n‐hexane as a reference compound. The Cl atoms were generated by UV photolysis (λ ≥ 300 nm) of Cl2 molecules. The following absolute rate constants (in units of 10−11 cm3 molecule−1 s−1, with errors representing ±2σ) for the reaction at 295 ± 2 K have been derived from the relative rate constants combined to the value 34.5 × 10−11 cm3 molecule−1 s−1 for the Cl + n‐hexane reaction: ethene (9.3 ± 0.6), propyne (22.1 ± 0.3), propene (27.6 ± 0.6), 1‐butene (35.2 ± 0.7), and 1‐pentene (48.3 ± 0.8). The temperature dependence of the reactions can be expressed as simple Arrhenius expressions (in units of 10−11 cm3 molecule−1 s−1): kethene = (0.39 ± 0.22) × 10−11 exp{(226 ± 42)/T}, kpropyne = (4.1 ± 2.5) × 10−11 exp{(118 ± 45)/T}, kpropene = (1.6 ± 1.8) × 10−11 exp{(203 ± 79)/T}, k1‐butene = (1.1 ± 1.3) × 10−11 exp{(245 ± 90)/T}, and k1‐pentene = (4.0 ± 2.2) × 10−11 exp{(423 ± 68)/T}. The applicability of our results to tropospheric chemistry is discussed. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 478–484, 2000  相似文献   

20.
The pulsed laser photolysis‐resonance fluorescence technique has been used to determine the absolute rate coefficient for the Cl atom reaction with a series of ketones, at room temperature (298 ± 2) K and in the pressure range 15–60 Torr. The rate coefficients obtained (in units of cm3 molecule−1 s−1) are: acetone (3.06 ± 0.38) × 10−12, 2‐butanone (3.24 ± 0.38) × 10−11, 3‐methyl‐2‐butanone (7.02 ± 0.89) × 10−11, 4‐methyl‐2‐pentanone (9.72 ± 1.2) × 10−11, 5‐methyl‐2‐hexanone (1.06 ± 0.14) × 10−10, chloroacetone (3.50 ± 0.45) × 10−12, 1,1‐dichloroacetone (4.16 ± 0.57) × 10−13, and 1,1,3‐trichloroacetone (<2.4 × 10−12). © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 62–66, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号