首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we study blowup of radially symmetric solutions of the nonlinear heat equation ut = Δu + |u|p?1u either on ?N or on a finite ball under the Dirichlet boundary conditions. We assume that the exponent p is supercritical in the Sobolev sense, that is, We prove that if ps < p < p*, then blowup is always of type I, where p* is a certain (explicitly given) positive number. More precisely, the rate of blowup in the L norm is always the same as that for the corresponding ODE dv/dt = |v|p?1v. Because it is known that “type II” blowup (or, equivalently, “fast blowup”) can occur if p > p*, the above range of exponent p is optimal. We will also derive various fundamental estimates for blowup that hold for any p > ps and regardless of type of blowup. Among other things we classify local profiles of type I and type II blowups in the rescaled coordinates. We then establish useful estimates for the so‐called incomplete blowup, which reveal that incomplete blowup solutions belong to nice function spaces even after the blowup time. © 2004 Wiley Periodicals, Inc.  相似文献   

2.
The gradient blowup of the equation ut = Δu + a(x)|∇u|p + h(x), where p > 2, is studied. It is shown that the gradient blowup rate will never match that of the self-similar variables. The exact blowup rate for radial solutions is established under the assumptions on the initial data so that the solution is monotonically increasing in time.  相似文献   

3.
We consider the semilinear heat equation ut = Δu + up both in ?N and in a bounded domain with homogeneous Dirichlet boundary conditions, with 1 < p < ps where ps is the Sobolev exponent. This problem has solutions with finite‐time blowup; that is, for large enough initial data there exists T < ∞ such that u is a classical solution for 0 < t < T, while it becomes unbounded as tT. In order to understand the situation for t > T, we consider a natural approximation by reaction problems with global solution and pass to the limit. As is well‐known, the limit solution undergoes complete blowup: after it blows up at t = T, the continuation is identically infinite for all t > T. We perform here a deeper analysis of how complete blowup occurs. Actually, the singularity set of a solution that blows up as tT propagates instantaneously at time t = T to cover the whole space, producing a catastrophic discontinuity between t = T? and t = T+. This is called the “avalanche.” We describe its formation as a layer appearing in the limit of the natural approximate problems. After a suitable scaling, the initial structure of the layer is given by the solution of a limit problem, described by a simple ordinary differential equation. As t proceeds past T, the solutions of the approximate problems have a traveling wave behavior with a speed that we compute. The situation in the inner region depends on the type of approximation: a conical pattern is formed with time when we approximate the power up by a flat truncation at level n, while for tangent truncations we get an exponential increase in time and a diffusive spatial pattern. © 2003 Wiley Periodicals, Inc.  相似文献   

4.
We study the large time asymptotic behavior of solutions of the doubly degenerate parabolic equation u t = div(u m−1|Du| p−2 Du) − u q with an initial condition u(x, 0) = u 0(x). Here the exponents m, p and q satisfy m + p ⩾ 3, p > 1 and q > m + p − 2. The paper was supported by NSF of China (10571144), NSF for youth of Fujian province in China (2005J037) and NSF of Jimei University in China.  相似文献   

5.
The aims of this paper are to discuss the extinction and positivity for the solution of the initial boundary value problem and Cauchy problem of ut = div([↓△u^m|p-2↓△u^m). It is proved that the weak solution will be extinct for 1 〈 p ≤ 1 + 1/m and will be positive for p 〉 1 + 1/m for large t, where m 〉 0.  相似文献   

6.
In this paper we consider a system of heat equations ut = Δu, vt = Δv in an unbounded domain Ω⊂ℝN coupled through the Neumann boundary conditions uv = vp, vv = uq, where p>0, q>0, pq>1 and ν is the exterior unit normal on ∂Ω. It is shown that for several types of domain there exists a critical exponent such that all of positive solutions blow up in a finite time in subcritical case (including the critical case) while there exist positive global solutions in the supercritical case if initial data are small.  相似文献   

7.
We consider nonnegative solutions of initial-boundary value problems for parabolic equationsu t=uxx, ut=(um)xxand (m>1) forx>0,t>0 with nonlinear boundary conditions−u x=up,−(u m)x=upand forx=0,t>0, wherep>0. The initial function is assumed to be bounded, smooth and to have, in the latter two cases, compact support. We prove that for each problem there exist positive critical valuesp 0,pc(withp 0<pc)such that forp∃(0,p 0],all solutions are global while forp∃(p0,pc] any solutionu≢0 blows up in a finite time and forp>p csmall data solutions exist globally in time while large data solutions are nonglobal. We havep c=2,p c=m+1 andp c=2m for each problem, whilep 0=1,p 0=1/2(m+1) andp 0=2m/(m+1) respectively. This work was done during visits of the first author to Iowa State University and the Institute for Mathematics and its Applications at the University of Minnesota. The second author was supported in part by NSF Grant DMS-9102210.  相似文献   

8.
We first describe all positive bounded solutions of where \input amstex \loadmsbm $(y,s)\in \Bbb R^N\times \Bbb R$ , 1 < p, and (N − 2)pN + 2. We then obtain for blowup solutions u(t) of uniform estimates at the blowup time and uniform space-time comparison with solutions of u′ = up. © 1998 John Wiley & Sons, Inc.  相似文献   

9.
We give new finite time blow-up results for the non-linear parabolic equations ut−Δu = up and ut−Δu+μ∣∇uq = up. We first establish an a priori bound in Lp+1 for the positive non-decreasing global solutions. As a consequence, we prove in particular that for the second equation on ℝN, with q = 2p/(p+1) and small μ>0, blow-up can occur for any N≥1, p>1, (N−2)p<N+2 and without energy restriction on the initial data. Incidentally, we present a simple model in population dynamics involving this equation.  相似文献   

10.
We establish the critical Fujita exponents for the solution of the porous medium equation ut=Δum, xR+N, t>0, subject to the nonlinear boundary condition −∂um/∂x1=up, x1=0, t>0, in multi-dimension.  相似文献   

11.
We study the Cauchy problem for the nonlinear heat equation ut-?u=|u|p-1u in RN. The initial data is of the form u0=λ?, where ?C0(RN) is fixed and λ>0. We first take 1<p<pf, where pf is the Fujita critical exponent, and ?C0(RN)∩L1(RN) with nonzero mean. We show that u(t) blows up for λ small, extending the H. Fujita blowup result for sign-changing solutions. Next, we consider 1<p<ps, where ps is the Sobolev critical exponent, and ?(x) decaying as |x|-σ at infinity, where p<1+2/σ. We also prove that u(t) blows up when λ is small, extending a result of T. Lee and W. Ni. For both cases, the solution enjoys some stable blowup properties. For example, there is single point blowup even if ? is not radial.  相似文献   

12.
Shin-Yi Lee  Jong-Yi Liui  Shin-Hwa Wang  Chiou-Ping Yei 《PAMM》2007,7(1):2040087-2040088
We study the bifurcation diagrams of (classical) positive solutions u with |u | ∈ (0, ∞) of the p -Laplacian Dirichlet problem (φp (u ′(x)))′ + λfq (u (x))) = 0, –1 ≤ x ≤ 1, u (–1) = 0 = u (1), where p > 1, φp (y) = |y |p –2 y, (φp (u ′))′ is the one-dimensional p -Laplacian, λ > 0 is a bifurcation parameter, and the nonlinearity fq (u) = |1 – u |q is defined on [0, ∞) with constant q > 0. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The structure of nontrivial nonnegative solutions to singularly perturbed quasilinear Dirichlet problems of the form –?Δpu = f(u) in Ω, u = 0 on ?Ω, Ω ? R N a bounded smooth domain, is studied as ? → 0+, for a class of nonlinearities f(u) satisfying f(0) = f(z1) = f(z2) = 0 with 0 < z1 < z2, f < 0 in (0, z1), f > 0 in (z1, z2) and f(u)/up–1 = –∞. It is shown that there are many nontrivial nonnegative solutions with spike‐layers. Moreover, the measure of each spike‐layer is estimated as ? → 0+. These results are applied to the study of the structure of positive solutions of the same problems with f changing sign many times in (0,). Uniqueness of a solution with a boundary‐layer and many positive intermediate solutions with spike‐layers are obtained for ? sufficiently small. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We study the equation ${{-{\Delta}u = (-\frac{1}{u^{\beta}}+\lambda{u}^{p})\chi\{u >0 }\}}${{-{\Delta}u = (-\frac{1}{u^{\beta}}+\lambda{u}^{p})\chi\{u >0 }\}} in Ω with Dirichlet boundary condition, where 0 < p < 1 and 0 < β < 1. We regularize the term 1/u β near u ~ 0 by using a function g ε (u) which pointwisely tends to 1/u β as ε → 0. When the parameter λ > 0 is large enough, the corresponding energy functional has critical points u ε . Letting ε → 0, then u ε converges to a solution of the original problem, which is nontrivial, nonnegative and vanishes at some portion of Ω. There are two nontrivial solutions.  相似文献   

15.
This paper studies heat equation with variable exponent u t = Δu + up(x) + u q in ? N × (0, T), where p(x) is a nonnegative continuous, bounded function, 0 < p? = inf p(x) ≤ p(x) ≤ sup p(x) = p+. It is easy to understand for the problem that all nontrivial nonnegative solutions must be global if and only if max {p+, q} ≤ 1. Based on the interaction between the two sources with fixed and variable exponents in the model, some Fujita type conditions are determined that that all nontrivial nonnegative solutions blow up in finite time if 0 < q ≤ 1 with p+ > 1, or 1 < q < 1 + \(\frac{2}{N}\). In addition, if q > 1 + \(\frac{2}{N}\), then (i) all solutions blow up in finite time with 0 < p?p+ ≤ 1 + \(\frac{2}{N}\); (ii) there are both global and nonglobal solutions for p? > 1 + \(\frac{2}{N}\); and (iii) there are functions p(x) such that all solutions blow up in finite time, and also functions p(x) such that the problem possesses global solutions when p? < 1 + \(\frac{2}{N}\) < p+.  相似文献   

16.
We consider the fast diffusion equation (FDE) u t = Δu m (0 < m < 1) on a nonparabolic Riemannian manifold M. Existence of weak solutions holds. Then we show that the validity of Euclidean–type Sobolev inequalities implies that certain L p L q smoothing effects of the type ∥u(t)∥ q Ct −αu 0γ p , the case q = ∞ being included. The converse holds if m is sufficiently close to one. We then consider the case in which the manifold has the addition gap property min σ(−Δ) > 0. In that case solutions vanish in finite time, and we estimate from below and from above the extinction time.   相似文献   

17.
We deal with the equations Δpu+f(u)=0 and Δpu+(p−1)g(u)p|∇u|+f(u)=0 in RN, where g(t) is a continuous function in (0,∞), p>1 and f(t) is a smooth function for t>0. Under appropriate conditions on g and f we show that the corresponding equation cannot have nontrivial non-negative entire solutions.  相似文献   

18.
We consider the Cauchy problem for the weakly coupled parabolic system ∂ t w λ−Δ w λ = F(w λ) in R N , where λ > 0, w λ = (u λ, v λ), F(w λ) = (v λ p , u λ q ) for some p, q ≥ 1, pq > 1, and , for some nonnegative functions φ1, φ2 C 0(R N ). If (p, q) is sub-critical or either φ1 or φ2 has slow decay at ∞, w λ blows up for all λ > 0. Under these conditions, we study the blowup of w λ for λ small.   相似文献   

19.
We study the asymptotic behaviour of global bounded solutions of the Cauchy problem for the semilinear 2mth order parabolic equation ut=?(?Δ)mu+|u|p in RN×R+, where m>1, p>1, with bounded integrable initial data u0. We prove that in the supercritical Fujita range p>pF=1+2m/N any small global solution with nonnegative initial mass, ∫u0dx?0, exhibits as t→∞ the asymptotic behaviour given by the fundamental solution of the linear parabolic operator (unlike the case p∈]1,pF] where solutions can blow-up for any arbitrarily small initial data). A discrete spectrum of other possible asymptotic patterns and the corresponding monotone sequence of critical exponents {pl=1+2m/(l+N),l=0,1,2,…}, where p0=pF, are discussed. To cite this article: Yu.V. Egorov et al., C. R. Acad. Sci. Paris, Ser. I 335 (2002) 805–810.  相似文献   

20.
We consider the Cauchy problem for the weakly coupled parabolic system ∂ t w λ−Δ w λ = F(w λ) in R N , where λ > 0, w λ = (u λ, v λ), F(w λ) = (v λ p , u λ q ) for some p, q ≥ 1, pq > 1, and wl(0) = (lj1, l\fracq+1p+1j2)w_{\lambda}(0) = ({\lambda}{\varphi}_1, {\lambda}^{\frac{q+1}{p+1}}{\varphi}_2), for some nonnegative functions φ1, φ2 ?\in C 0(R N ). If (p, q) is sub-critical or either φ1 or φ2 has slow decay at ∞, w λ blows up for all λ > 0. Under these conditions, we study the blowup of w λ for λ small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号