首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The pyrolysis of 1- and 2-nitropropane highly diluted in Ar has been studied in shock waves at temperatures K 915 < T < 1200 K and total gas concentrations 7 · 10?6 mol cm?3 < [Ar] < 1.5 · 10?4 mol cm?3. The reactions behind the shock waves have been followed by recording light absorption-time profiles of the decomposing molecules and the produced NO2 Under the conditions of the experiments, the primary reaction step in both cases is the C? N bond:fission: \documentclass{article}\pagestyle{empty}\begin{document}$ \begin{array}{rcl} {\rm 1} - {\rm C}_{\rm 3} {\rm H}_{\rm 7} {\rm NO}_{\rm 2} {\rm (} + {\rm M)} &\to & n - {\rm C}_{\rm 3} {\rm H}_{\rm 7} + {\rm NO}_{\rm 2} {\rm (} + {\rm M)\quad k} = 2.3 \cdot 10^{15} {\rm exp }(- 55{\rm kcal mol}^{ - 1} /{\rm RT}){\rm s}^{ - 1} \\ 2 - {\rm C}_{\rm 3} {\rm H}_{\rm 7} {\rm NO}_{\rm 2} {\rm (} + {\rm M)} &\to & i - {\rm C}_{\rm 3} {\rm H}_{\rm 7} + {\rm NO}_{\rm 2} {\rm (} + {\rm M)\quad k} = 2.4 \cdot 10^{15} {\rm exp }(- 54{\rm kcal mol}^{ - 1} /{\rm RT}){\rm s}^{ - 1} \\ \end{array} $\end{document} (first order rate constants k measured at concentrations of [Ar] ? 10?4 mol cm?3). At these concentrations the reactions are near to the high pressure limit. By varying the Ar-concentrations over one order of magnitude, only a slight pressure dependence was found. Reaction mechanisms which account for NO2 removal are discussed.  相似文献   

3.
Rate constants k1, k2, and k3 have been measured at 298 K by means of a laser photolysis-laser magnetic resonance technique and (or) by a laser photolysis-infrared chemiluminescence detection technique (LMR and IRCL, respectively). \hfill\hbox to 12em{$\rm Cl+I_2\longrightarrow ICl+I;$}\hbox to 8em{$\rm {\it k}_1=(2.5\pm 0.7)\times 10^{-10}(IRCL)$}\hfill(1)\\\hfill\hbox to 12em{}\hbox to 8em{$\rm {\it k}_1=(2.8\pm 0.8)\times 10^{-10}(LMR)$}\hfill \\\hfill\hbox to 12em{$\rm SiCl_3+I_2\longrightarrow SiCl_3I+I;$}\hbox to 8em{$\rm {\it k}_2=(5.8\pm 1.8)\times 10^{-10}(IRCL)$}\hfill (2)\\\hfill\hbox to 12em{$\rm SiH_3+I_2\longrightarrow SiIH_3+I;$}\hbox to 8em{$\rm {\it k}_3=(1.8\pm 0.46)\times 10^{-10}(LMR)$}\hfill (3)\\ As an average of the LMR and IRCL results we offer the value k1 = (2.7 ± 0.6) × 10−10. Units are cm3 molecule−1 s−1; uncertainties are 2σ including precision and estimated systematic errors. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 25–33, 1997.  相似文献   

4.
Characterization of [C4H5O]+ ions in the gas phase using their collisional activation spectra shows that the four C3H5\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O isomers CH2?C(CH3)\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O, CH2?CHCH2\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O, CH3CH?CH\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O and ?? \documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O are stable for ≥ 10?5 s. It is concluded further from the characteristic shapes for the unimolecular loss of CO from C3H5\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O ions generated from a series of precursor molecules that the CH2?CH(CH3)\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O- and CH2?CHCH2\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O-type ions dissociate over different potential surfaces to yield [allyl]+ and [2-propenyl]+ [C3H5]+ product ions respectively. Cyclopropyl carbonyl-type ions lose CO with a large kinetic energy release, which points to ring opening in the transition state, whereas this loss from CH3CH?CH\documentclass{article}\pagestyle{empty}\begin{document} $\mathop {\rm C}\limits^ + =\!= $\end{document}O-type ions is proposed to occur via a rate determining 1,2-H shift to yield 2-propenyl cations.  相似文献   

5.
A novel high energy material, 1‐amino‐1‐methylamino‐2,2‐dinitroethlyene (AMFOX‐7), was synthesized by the reaction of 1,1‐diamino‐2,2‐dinitroethylene (FOX‐7) and methylamine aqueous solution in N‐methyl pyrrolidone at 80°C. The thermal behavior and non‐isothermal decomposition kinetics of AMFOX‐7 were studied with DSC and TG/DTG methods. The kinetic equation of thermal decomposition reaction can be expressed as: $ {\rm d\alpha /d}T = \frac{{10^{21.03}}}{{\rm \beta}}\frac{3}{2}\left({1 - {\rm \alpha}} \right)\left[{- 1{\rm n}\left({{\rm 1} - {\rm \alpha}} \right)} \right]^{\frac{1}{3}} \exp \left({- 2.292 \times 10^5 {\rm /}RT} \right) A novel high energy material, 1‐amino‐1‐methylamino‐2,2‐dinitroethlyene (AMFOX‐7), was synthesized by the reaction of 1,1‐diamino‐2,2‐dinitroethylene (FOX‐7) and methylamine aqueous solution in N‐methyl pyrrolidone at 80°C. The thermal behavior and non‐isothermal decomposition kinetics of AMFOX‐7 were studied with DSC and TG/DTG methods. The kinetic equation of thermal decomposition reaction can be expressed as: $ {\rm d\alpha /d}T = \frac{{10^{21.03}}}{{\rm \beta}}\frac{3}{2}\left({1 - {\rm \alpha}} \right)\left[{- 1{\rm n}\left({{\rm 1} - {\rm \alpha}} \right)} \right]^{\frac{1}{3}} \exp \left({- 2.292 \times 10^5 {\rm /}RT} \right) $. The critical temperature of thermal explosion of AMFOX‐7 is 244.89°C. The specific heat capacity of AMFOX‐7 was determined with micro‐DSC method and theoretical calculation method, and the standard molar specific heat capacity is 199.39 J·mol?1·K?1 at 298.15 K. Adiabatic time‐to‐explosion of AMFOX‐7 was also calculated to be 215.41 s. AMFOX‐7 has higher thermal stability than FOX‐7.  相似文献   

6.
The kinetics of the reaction between BrO3 and sulfite was studied by measuring the concentrations of [Br] and [H+] both in buffered and in unbuffered solutions. A mechanism was applied for simulation of the experimental observations. Rate constants k1=(0.027±0.004) M−1s−1 and k2=(85±5) M−1s−1 were determined for the following reactions: \halign{\hfill $#$\hfill &\hfill\qquad\qquad #\cr 3\ \rm HSO_{3}\!^{-}+BrO_{3}\!^{-}\longrightarrow 3\ SO_{4}\!^{2-}+Br^{-}+3\ H^{+}& (1)\cr 3\ \rm H_{2}SO_{3}(\hbox{or}\ SO_{2.}\hbox{aq})+BrO_{3}\!^{-}\longrightarrow 3\ SO_{4}\!^{2-}+Br^{-}+6\ H^{+}& (2)\cr } Rate constant k1 was obtained directly from the experimental results on unbuffered reactions, where Reaction (1) was predominant. Rate constant k2 was obtained by computer fitting of [Br] to the experimental values for buffered reactions, where the rate of Reaction (2) was about four times higher than that of Reaction (1). © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 869–874, 1998  相似文献   

7.
The steady-state viscosity η, the dynamic viscosity η′, and the storage modulus G′ of several high-density and low-density polyethylene melts were investigated by using the Instron rheometer and the Weissenberg rheogoniometer. The theoretical relation between the two viscosities as proposed earlier is:\documentclass{article}\pagestyle{empty}\begin{document}$ \eta \left( {\dot \gamma } \right){\rm } = {\rm }\int {H\left( {\ln {\rm }\tau } \right)} {\rm }h\left( \theta \right)g\left( \theta \right)^{{\raise0.7ex\hbox{$3$} \!\mathord{\left/ {\vphantom {3 2}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$2$}}} \tau {\rm }d{\rm }\ln {\rm }\tau $\end{document}, where \documentclass{article}\pagestyle{empty}\begin{document}$ \theta {\rm } = {\rm }{{\dot \gamma \tau } \mathord{\left/ {\vphantom {{\dot \gamma \tau } 2}} \right. \kern-\nulldelimiterspace} 2} $\end{document}; \documentclass{article}\pagestyle{empty}\begin{document}$ {\dot \gamma } $\end{document} is the shear rate, H is the relaxation spectrum, τ is the relaxation time, \documentclass{article}\pagestyle{empty}\begin{document}$ g\left( \theta \right){\rm } = {\rm }\left( {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} \right)\left[ {\cot ^{ - 1} \theta {\rm } + {\rm }{\theta \mathord{\left/ {\vphantom {\theta {\left( {1 + \theta ^2 } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 + \theta ^2 } \right)}}} \right] $\end{document}, and \documentclass{article}\pagestyle{empty}\begin{document}$ h\left( \theta \right){\rm } = {\rm }\left( {{2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi }} \right)\left[ {\cot ^{ - 1} \theta {\rm } + {\rm }{{\theta \left( {1{\rm } - {\rm }\theta ^2 } \right)} \mathord{\left/ {\vphantom {{\theta \left( {1{\rm } - {\rm }\theta ^2 } \right)} {\left( {1{\rm } + {\rm }\theta ^2 } \right)^2 }}} \right. \kern-\nulldelimiterspace} {\left( {1{\rm } + {\rm }\theta ^2 } \right)^2 }}} \right] $\end{document}. Good agreement between the experimental and calculated values was obtained, without any coordinate shift, for high-density polyethylenes as well as for a low density sample with low nw, the weight-average number of branch points per molecule. The correlation, however, was poor with low-density samples with large values of the long-chain branching index nw. This lack of coordination can be related to nw. The empirical relation of Cox and Merz failed in a similar way.  相似文献   

8.
Conduction band electrons produced by band gap excitation of TiO2-particles reduce efficiently thiosulfate to sulfide and sulfite. \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm 2e}_{{\rm cb}}^ - ({\rm TiO}_{\rm 2}) + {\rm S}_{\rm 2} {\rm O}_3^{2 - } \longrightarrow {\rm S}^{2 - } + {\rm SO}_3^{2 - } $\end{document} This reaction is confirmed by electrochemical investigations with polycrystalline TiO2-electrodes. The valence band process in alkaline TiO2-dispersions involves oxidation of S2O to tetrathionate which quantitatively dismutates into sulfite and thiosulfate, the net reaction being: \documentclass{article}\pagestyle{empty}\begin{document}$ 2{\rm h}^{\rm + } ({\rm TiO}_{\rm 2}) + 0.5{\rm S}_{\rm 2} {\rm O}_{\rm 3}^{{\rm 2} - } + 1.5{\rm H}_{\rm 2} {\rm O} \longrightarrow {\rm SO}_3^{2 - } + 3{\rm H}^{\rm + } $\end{document} This photodriven disproportionation of thiosulfate into sulfide and sulfite: \documentclass{article}\pagestyle{empty}\begin{document}$ 1.5{\rm H}_{\rm 2} {\rm O } + 1.5{\rm S}_{\rm 2} {\rm O}_{\rm 3}^{{\rm 2} - } \mathop \to \limits^{h\nu} 2{\rm SO}_3^{2 - } + {\rm S}^{{\rm 2} - } + 3{\rm H}^{\rm + } $\end{document} should be of great interest for systems that photochemically split hydrogen sulfide into hydrogen and sulfur.  相似文献   

9.
The constants for the dissociation of citric acid (H3C) have been determined from potentiometric titrations in aqueous NaCl and KCl solutions and their mixtures as a function of ionic strength (0.05–4.5 mol-dm–3) at 25 °C. The stoichiometric dissociation constants (Ki*)
were used to determine Pitzer parameters for citric acid (H3C), and the anions, H2C, HC2–, and C3–. The thermodynamic constants (Ki) needed for these calculations were taken from the work of R. G. Bates and G. D. Pinching (J. Amer. Chem. Soc. 71, 1274; 1949) to fit to the equations (T/K):
The values of Pitzer interaction parameters for Na+ and K+ with H3C, H2C, HC2–, and C3– have been determined from the measured pK values. These parameters represent the values of pK1*, pK2*, and pK3*, respectively, with standard errors of = 0.003–0.006, 0.015–0.016, and 0.019–0.023 for the first, second, and third dissociation constants. A simple mixing of the pK* values for the pure salts in dilute solutions yield values for the mixtures that are in good agreement with the measured values. The full Pitzer equations are necessary to estimate the values of pKi* in the mixtures at high ionic strengths. The interaction parameters found for the mixtures are Na-K – H2C = – 0.00823 ± 0.0009; Na-K – HC = – 0.0233 ± 0.0009, and Na-K – C = 0.0299 ± 0.0055 with standard errors of (pK1) = 0.011, (pK2) = 0.011, and (pK3) = 0.055.  相似文献   

10.

Ni(II)NQ 2 en, a Ni(II) complex with two naphthoquinone groups incorporated into a Schiff-base ligand, undergoes two reversible reductions in which the naphthoquinone (NQ) groups are each reduced by one electron to naphthsemiquinone radical anions (SQ): $$\eqalignno{& {\rm Ni}({\rm II}){\rm NQ}_2 {\rm en} + {\rm e}^ - \mathop \to \limits^{E_1^{\,0} }[{\rm Ni}({\rm II})({\rm SQ}, {\rm NQ}){\rm en}]^ - \cr & [{\rm Ni}({\rm II})({\rm SQ}, {\rm NQ}){\rm en}]^ - + {\rm e}^ - \mathop \to \limits^{E_2^{\,0} } [{\rm Ni}({\rm II}){\rm SQ}_2 {\rm en}]^{2 - } \cr}$$ Analysis of the cyclic and differential pulse voltammetry waves shows that $E_2^0 - E_1^0 = - 36\, {\rm mV}$ , a j E 0 that corresponds to two noninteracting redox centers.  相似文献   

11.
The inorganic behavior of most divalent metals in natural waters is affected by the formation of carbonate complexes. The acidification of the oceans will lower the carbonate concentration in the oceans. This will increase the concentration of free copper that is toxic to marine organisms. To be able to determine the effect of this acidification, reliable stability constants are needed for the formation of copper carbonate complexes. In this paper, the speciation of Cu(II) with bicarbonate and carbonate ions
${rcl}&&\mathrm{Cu}^{2+}+\mathrm{HCO}_{3}^{-}\rightleftharpoons \mathrm{CuCO}_{3(\mathrm{aq})}+\mathrm{H}^{+}\\[4pt]&&\mathrm{Cu}^{2+}+2\mathrm{HCO}_{3}^{-}\rightleftharpoons \mathrm{Cu}(\mathrm{CO}_{3})_{2}^{2-}+2\mathrm{H}^{+}\\[4pt]&&\mathrm{Cu}^{2+}+\mathrm{CO}_{3}^{2-}\rightleftharpoons \mathrm{CuCO}_{3(\mathrm{aq})}\\[4pt]&&\mathrm{Cu}^{2+}+2\mathrm{CO}_{3}^{2-}\rightleftharpoons \mathrm{Cu}(\mathrm{CO}_{3})_{2}^{2-}\\[4pt]&&\mathrm{Cu}^{2+}+\mathrm{HCO}_{3}^{-}\rightleftharpoons \mathrm{CuHCO}_{3}^{+}$\begin{array}{rcl}&&\mathrm{Cu}^{2+}+\mathrm{HCO}_{3}^{-}\rightleftharpoons \mathrm{CuCO}_{3(\mathrm{aq})}+\mathrm{H}^{+}\\[4pt]&&\mathrm{Cu}^{2+}+2\mathrm{HCO}_{3}^{-}\rightleftharpoons \mathrm{Cu}(\mathrm{CO}_{3})_{2}^{2-}+2\mathrm{H}^{+}\\[4pt]&&\mathrm{Cu}^{2+}+\mathrm{CO}_{3}^{2-}\rightleftharpoons \mathrm{CuCO}_{3(\mathrm{aq})}\\[4pt]&&\mathrm{Cu}^{2+}+2\mathrm{CO}_{3}^{2-}\rightleftharpoons \mathrm{Cu}(\mathrm{CO}_{3})_{2}^{2-}\\[4pt]&&\mathrm{Cu}^{2+}+\mathrm{HCO}_{3}^{-}\rightleftharpoons \mathrm{CuHCO}_{3}^{+}\end{array}  相似文献   

12.
The specific rate kD for reaction between polymer radicals is formulated when the potential of average force on the basis of the excluded volume affects the motion of the polymer radicals. This rate is given by \documentclass{article}\pagestyle{empty}\begin{document}$ k_D = Fk_S \left( {{\rm with}\ {F} = \sum\limits_{s = 0}^\infty {{{[ ‐ 2(\alpha ^2 ‐ 1)]} \mathord{\left/ {\vphantom {{[ ‐ 2(\alpha ^2 ‐ 1)]} {(s + 1)^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern‐\nulldelimiterspace} 2}} }}} \right. \kern‐\nulldelimiterspace} {(s + 1)^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern‐\nulldelimiterspace} 2}} }}} } \right) $\end{document} where kS is specific rate of reaction between radical chain ends and α is the average expansion of the polymer arising from the long-range effects. The effect of the excluded volume reduces kD. F depends on the degree of polymerization of the polymer radical when α ≠ 1. These results are discussed in terms of the experimental data for very low polymer concentrations.  相似文献   

13.
Ab initio molecular orbital calculations with split-valence plus polarization basis sets and incorporating electron correlation and zero-point energy corrections have been used to examine possible equilibrium structures on the [C2H7N]+˙ surface. In addition to the radical cations of ethylamine and dimethylamine, three other isomers were found which have comparable energy, but which have no stable neutral counterparts. These are \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm .} {\rm H}_{\rm 2} {\rm CH}_{\rm 2} \mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 3} $\end{document}, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm C}\limits^{\rm .} {\rm H}\mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 3} $\end{document}and\documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 2} \mathop {\rm C}\limits^. {\rm H}_{\rm 2} {\rm }, $\end{document} with calculated energies relative to the ethylamine radical cation of ?33, ?28 and 4 kJ mol?1, respectively. Substantial barriers for rearrangement among the various isomers and significant binding energies with respect to possible fragmentation products are found. The predictions for \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^. {\rm H}_{\rm 2} {\rm CH}_{\rm 2} \mathop {\rm N}\limits^ + {\rm H}_{\rm 3} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm C}\limits^{\rm .} {\rm H}\mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 3}$\end{document} are consistent with their recent observation in the gas phase. The remaining isomer, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 2} \mathop {\rm C}\limits^{\rm .} {\rm H}_{\rm 2} {\rm },$\end{document}is also predicted to be experimentally observable.  相似文献   

14.
Several \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm C}_{{\rm 4}} {\rm H}_{{\rm\ 8}} } \right]_{}^{_.^ + } $\end{document} ion isomers yield characteristic and distinguishable collisional activation spectra: \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm 1-butene} } \right]_{}^{_.^ + } $\end{document} and/or \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm 2-butene} } \right]_{}^{_.^ + } $\end{document} (a-b), \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm isobutene} } \right]_{}^{_.^ + } $\end{document} (c) and [cyclobutane]+ (e), while the collisional activation spectrum of \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm methylcyclopropane} } \right]_{}^{_.^ + } $\end{document} (d) could also arise from a combination of a-b and c. Although ready isomerization may occur for \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm C}_{{\rm 4}} {\rm H}_{{\rm 8}} } \right]_{}^{_.^ + } $\end{document} ions of higher internal energy, such as d or ea, b, and/or c, the isomeric product ions identified from many precursors are consistent with previously postulated rearrangement mechanisms. 1,4-Eliminations of HX occur in 1-alkanols and, in part, 1-buthanethiol and 1-bromobutane. The collisional activation data are consistent with a substantial proportion of 1,3-elimination in 1- and 2-chlorobutane, although 1,2-elimination may also occur in the latter, and the formation of the methylcycloprpane ion from n-butyl vinyl ether and from n-butyl formate. Surprisingly, cyclohexane yields the \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm linear butene} } \right]_{}^{_.^ + } $\end{document} ions a-b, not \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm cyclobutane} } \right]_{}^{_.^ + } $\end{document}, e.  相似文献   

15.
The radical anions of 6a-thiathiophthenes ([1,2]dithiolo[1,5-b] [1,2]dithioles), I(R), convert into those of 4H-thiapyran-4-thiones, III(R), via cis-trans isomerization. The reaction is slowed down when the size of the substituent R in the 2,5-positions of 6a-thiathiophthene increases, and it is prevented by the introduction of a 3,4-polymethylene bridge. The primary and the secondary radical anions, I(R)\documentclass{article}\pagestyle{empty}\begin{document}$ ^{\ominus \atop \dot{}} $\end{document} and III(R)\documentclass{article}\pagestyle{empty}\begin{document}$ ^{\ominus \atop \dot{}} $\end{document}, respectively, exhibit very similar hyperfine splitting patterns. E.g., in the case of the unsubstituted 6a-thiathiophthene, I(H), and 4H-thiapyran-4-thione, III(H), the proton coupling constants are aH2,5=6.72 and aH3,4=1.73 Gauss for I(H)\documentclass{article}\pagestyle{empty}\begin{document}$ ^{\ominus \atop \dot{}} $\end{document}, and aH2,6=6.35 and aH3,5=2.07 Gauss for III(H)\documentclass{article}\pagestyle{empty}\begin{document}$ ^{\ominus \atop \dot{}} $\end{document}. In contrast to I(H)\documentclass{article}\pagestyle{empty}\begin{document}$ ^{\ominus \atop \dot{}} $\end{document}, cis-trans isomerization could not thus far be proved to occur with its 1,6-dioxa-analogue, IV(H)\documentclass{article}\pagestyle{empty}\begin{document}$ ^{\ominus \atop \dot{}} $\end{document}, since no ESR. spectrum of the radical anion of 4H-pyran-4-thione, V(H), was detected upon reduction of IV(H).  相似文献   

16.
The thermal decomposition of N-methyl-N-allylaniline in the gas phase over the temperature range 575 to 665 K appears to be a homogeneous radical chain reaction yielding allyl and C6H5NCH3 radicals in the primary step as is indicated by the numerous chain-terminating radical recombination products and the effect of diluents on the rate constants. From experiments carried out with excess of diluent, first order rate constants which can be identified with the rate determining chain initiating step, were calculated using the internal standard technique and found to fit the Arrhenius relationship \documentclass{article}\pagestyle{empty}\begin{document}$\ log({\rm k}/{\rm s}^{ - 1}) = 13.75 \pm 0.43 - (48.50 \pm 1.23\,{\rm kcal mol}^{{\rm - 1}})/2.303\,{\rm RT} $\end{document}. Although the Arrhenius parameters are slightly low, which is attributed to some loss of substrate by secondary reactions, they are in general agreement with prediction. The relevance of these results to the thermal behavior of allylamines and the nature of six-center transition states is discussed.  相似文献   

17.
Kinetics and equilibria for the formation of a 1:1 complex between palladium(II) and chloroacetate were studied by spectrophotometric measurements in 1.00 mol HClO4 at 298.2 K. The equilibrium constant, K, of the reaction
was determined from multi-wavelength absorbance measurements of equilibrated solutions at variable temperatures as log 0.006 with and , and spectra of individual species were calculated. Variable-temperature kinetic measurements gave rate constants for the forward and backward reactions at 298.2 K and ionic strength 1.00 mol as and , with activation parameters and , respectively. From the kinetics of the forward and reverse processes, and were derived in good agreement with the results of the equilibrium measurements. Specific Ion Interaction Theory was employed for determination of thermodynamic equilibrium constants for the protonation of chloroacetate () and formation of the PdL+ complex (). Specific ion interaction coefficients were derived.  相似文献   

18.
A study of the fragmentation of the \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{\left({{\rm C}_{\rm 6} {\rm H}_{\rm 6} {\rm O}} \right){\rm Fe}} \right]_{}^{_.^ + } $\end{document} ion formed from two different precursors suggests that the ions adopt different structures over that part of the energy distribution giving rise to decomposition in the ion source.  相似文献   

19.
Products of radical combination from the free-radical buffer system \documentclass{article}\usepackage{amssymb}\pagestyle{empty}\begin{document}$${{\rm R}^{\rm .} + {\rm R}^{\rm '} {\rm I}\mathop {\leftrightharpoons}\limits^{{\rm K}_{{\rm RR}}}{\rm RI} + {\rm R}^{'}}$$\end{document}. have been analyzed for the two cases, R = Me, R′ = iPr and R = Et, R′ = iPr. Results are consistent with the previously examined system where R = Me, R′ = Et, and give a value of kP for iPr· combination of 108.6±1.1 M?1 sec?1.  相似文献   

20.
The unimolecular decompositions of two isomers of [C3H8N]+, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH}_{\rm 2} {\rm CH} = \mathop {\rm N}\limits^ + {\rm H}_2 $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH}_{\rm 2} \mathop {\rm N}\limits^ + {\rm H = CH}_{\rm 2} $\end{document}, are discussed in terms of the potential energy profile over which reaction may be considered to occur. The energy needed to promote slow (metastable) dissociations of either ion is found to be less than that required to cause isomerization to the other structure. This finding is supported by the observation of different decomposition pathways, different metastable peak shapes for C2H4 loss, the results of 2H labelling studies, and energy measurements on the two ions. The corresponding potential energy profile for decomposition of the oxygen analogues, \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 3} {\rm CH}_{\rm 2} {\rm CH =\!= }\mathop {\rm O}\limits^ + {\rm H} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH}_{\rm 2} \mathop {\rm O}\limits^ + {\rm = CH}_{\rm 2} $\end{document}, is compared and contrasted with that proposed for the [C3H8N]+ isomers. This analysis indicates that for the oxygen analogues, the energy needed to decompose either ion is very similar to that required to cause isomerization to the other structure. Consequently, dissociation of either ion is finely balanced with rearrangement to the other and similar reactions are observed. Detailed mechanisms are proposed for loss of H2O and C2H4 from each ion and it is shown that these mechanisms are consistent with 2H and 13C labelling studies, the kinetic energy release associated with each decomposition channel, the relative competition between H2O and C2H4 loss and energy measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号