首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Using a relative rate method, rate constants for the gas-phase reactions of 2-methyl-3-buten-2-ol (MBO) with OH radicals, ozone, NO3 radicals, and Cl atoms have been investigated using FTIR. The measured values for MBO at 298±2 K and 740±5 torr total pressure are: kOH=(3.9±1.2)×10−11 cm3 molecule−1 s−1, kO3=(8.6±2.9)×10−18 cm3 molecule−1 s−1, k=(8.6±2.9)×10−15 cm3 molecule−1 s−1, and kCl=(4.7±1.0)×10−10 cm3 molecule−1 s−1. Atmospheric lifetimes have been estimated with respect to the reactions with OH, O3, NO3, and Cl. The atmospheric relevance of this compound as a precursor for acetone is, also, briefly discussed. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet: 30: 589–594, 1998  相似文献   

2.
The temperature dependence of the rate coefficients for the OH radical reactions with iso-propyl acetate (k1), iso-butyl acetate (k2), sec-butyl acetate (k3), and tert-butyl acetate (k4) have been determined over the temperature range 253–372 K. The Arrhenius expressions obtained are: k1=(0.30±0.03)×10−12 exp[(770±52)/T]; k2=(109±0.14)×10−12 exp[(534±79)/T]; k3=(0.73±0.08)×10−12 exp[(640±62)/T]; and k4=(22.2±0.34)×10−12 exp[−(395±92)/T] (in units of cm3 molecule−1 s−1). At room temperature, the rate constants obtained (in units of 10−12 cm3 molecule−1 s−1) were as follows: iso-propyl acetate (3.77±0.29); iso-butyl acetate (6.33±0.52); sec-butyl acetate (6.04±0.58); and tert-butyl acetate (0.56±0.05). Our results are compared with the previous determinations and discussed in terms of structure-activity relationships. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet: 29: 683–688, 1997.  相似文献   

3.
Cavity ring‐down UV absorption spectroscopy was used to study the kinetics of the recombination reaction of FCO radicals and the reactions with O2 and NO in 4.0–15.5 Torr total pressure of N2 diluent at 295 K. k(FCO + FCO) is (1.8 ± 0.3) × 10−11 cm3 molecule−1 s−1. The pressure dependence of the reactions with O2 and NO in air at 295 K is described using a broadening factor of Fc = 0.6 and the following low (k0) and high (k) pressure limit rate constants: k0(FCO + O2) = (8.6 ± 0.4) × 10−31 cm6 molecule−1 s−1, k(FCO + O2) = (1.2 ± 0.2) × 10−12 cm3 molecule−1 s−1, k0(FCO + NO) = (2.4 ± 0.2) × 10−30 cm6 molecule−1 s−1, and k (FCO + NO) = (1.0 ± 0.2) × 10−12 cm3 molecule−1 s−1. The uncertainties are two standard deviations. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 130–135, 2001  相似文献   

4.
The rate constant for the reaction of OH radicals with pinonaldehyde has been measured at 293 ± 6 K using the relative rate method in the laboratory in Wuppertal (Germany) using photolytic sources for the production of OH radicals and in the EUPHORE smog chamber facility in Valencia (Spain) using the in situ ozonolysis of 2,3‐dimethyl‐2‐butene as a dark source of OH radicals. In all the experiments pinonaldehyde and the reference compounds were monitored by FTIR spectroscopy, and in addition in the EUPHORE smog chamber the decay of pinonaldehyde was monitored by the HPLC/DNPH method and the reference compound by GC/FID. The results from all the different series of experiments were in good agreement and lead to an average value of k(pinonaldehyde + OH) = (4.0 ± 1.0) × 10−11 cm3 molecule−1 s−1. This result lead to steady‐state estimates of atmospheric pinonaldehyde concentrations in the ppbV range (1 ppbV ≈ 2.5 × 1010 molecule cm−3 at 298 K and 1 atm) in regions with substantial α‐pinene emission. It also implies that atmospheric sinks of pinonaldehyde by reaction with OH radicals could be half as important as its photolysis. The rate constant of the reaction of pinonaldehyde with Cl atoms has been measured for the first time. Relative rate measurements lead to a value of k(pinonaldehyde + Cl) = (2.4 ± 1.4) × 10−10 cm3 molecule−1 s−1. In contrast to previous studies which suggested enhanced kinetic reactivity for pinonaldehyde compared to other aldehydes, the results from both the OH‐ and Cl‐initiated oxidation of pinonaldehyde in the present work are in line with predictions using structure‐activity relationships. © 1999 John Wiley & Sons, Inc., Int J Chem Kinet 31: 291–301, 1999  相似文献   

5.
The rate constants for the gas-phase reactions between methylethylether and hydroxyl radicals (OH) and methylethylether and chlorine atoms (Cl) have been determined over the temperature range 274–345 K using a relative rate technique. In this range the rate constants vary little with temperature and average values of kMEE+OH = (6.60−2.62+3.88) × 10−12 cm3 molecule−1 s−1 and kMEE+Cl= (34.9 ± 6.7) × 10−11 cm3 molecule−1 s−1 were obtained. The atmospheric lifetimes of methylethylether have been estimated with respect to removal by OH radicals and Cl atoms to be ca. 2 days and ca. 30–40 days, respectively. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 231–236, 1997.  相似文献   

6.
The reactions between OH radicals and hydrogen halides (HCl, HBr, HI) have been studied between 298 and 460 K by using a discharge flow-electron paramagnetic resonance technique. The rate constants were found to be kHCl(298 K) = (7.9 ± 1.3) × 10−13 cm3 molecule−1 s−1 with a weak positive temperature dependence, kHBr (298-460 K) = (1.04 ± 0.2) × 10−11 cm3 molecule−1 s−1, and kHI(298 K) = (3.0 ± 0.3) × 10−11 cm3 molecule−1 s−1, respectively. The homogeneous nature of these reactions has been experimentally tested.  相似文献   

7.
Rate constants for three dimethylbenzaldehydes and two trimethylphenols have been determined for the OH reactions at 298±2 K and atmospheric pressure using a relative rate method. The OH reaction rate constants were placed on an absolute basis using the literature rate constant for 1,2,4-trimethylbenzene of (3.25±0.5)×10−11 cm3 molecule−1s−1). The measured rate constants were (in units of cm3 molecule−1 s−1) 2,4-dimethyl-benzaldehyde, (4.32±0.67)×10−11; 2,5-dimethylbenzaldehyde, (4.37±0.68)×10−11; 3,4-dimethylbenzaldehyde, (2.14±0.34)×10−11; and 2,3,5- trimethylphenol, (12.5±1.9)×10−11, 2,3,6-trimethylphenol, (11.8±1.8)×10−11. Using an average OH concentration of 8.7×105 molecule cm−3, the estimated atmospheric lifetimes are ca. 7.5 h for 2,4- and 2,5-dimethylbenzaldehydes, ca. 15 h for 3,4-dimethylbenzaldehyde, ca. 2.5 h for 2,3,5- and 2,3,6-trimethylphenols. The reactivities of the trimethylphenols exceed those of the dimethyl-benzaldehydes by more than a factor of 3. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 523–525, 1997.  相似文献   

8.
《Chemical physics letters》1987,136(2):209-214
We present absolute measurements of the rate constant for the reactions of OH with cyclohexane: k1=(8.6±0.8) × 10−12 cm3 molecule−1s−1 and with ethane: k3= (2.74±0.3) × 10−13 cm3 molecule−1 s−1, both measured at room temperature by discharge flow resonance fluorescence. Our result for k1 is above the average of two previously published measurements, but is in agreement with the preferred values of two recent reviews, as deduced from either relative measurements or theoretical correlations.  相似文献   

9.
A discharge flow reactor coupled to a laser-induced fluorescence (LIF) detector and a mass spectrometer was used to study the kinetics of the reactions CH3O+Br→products (1) and CH3O+BrO→products (2). From the kinetic analysis of CH3O by LIF in the presence of an excess of Br or BrO, the following rate constants were obtained at 298 K: k1=(7.0±0.4)×10−11 cm3 molecule−1 s−1 and k2=(3.8±0.4)×10−11 cm3 molecule−1 s−1. The data obtained are useful for the interpretation of other laboratory studies of the reactions of CH3O2 with Br and BrO. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 249–255, 1998.  相似文献   

10.
The rate constants for the gas-phase reactions of di-tert-butyl ether (DTBE) with chlorine atoms, hydroxyl radicals, and nitrate radicals have been determined in relative rate experiments using FTIR spectroscopy. Values of k(DTBE+CI) = (1.4 ± 0.2) × 10−10,k(DTBE+OH) = (3.7 ± 0.7) × 10−12, and k(DTBE+N03) = (2.8 ± 0.9) × 10−16 cm3 molecule−1 s−1 were obtained. Tert-butyl acetate was identified as the major product of both Cl atom and OH radical initiated oxidation of DTBE in air in the presence of NOx. The molar tert-butyl acetate yield was 0.85 ± 0.11 in the Cl atom experiments and 0.84 ± 0.11 in OH radical experiments. As part of this work the rate constant for reaction of Cl atoms with tert-butyl acetate at 295 K was determined to be (1.6 ± 0.3) × 10−11 cm3 molecule−1 s−1. The stated errors are two standard deviations (2σ). © 1996 John Wiley & Sons, Inc.  相似文献   

11.
The rate constants of the isopropyl acetate, n-propyl acetate, isopropenyl acetate, n-propenyl acetate, n-butyl acetate, and ethyl butyrate reactions with OH radicals were determined in purified air under atmospheric conditions, at 750 torr and (295 ± 2) K. A relative rate experimental method was used; n-heptane, n-octane, and n-nonane were the reference compounds, with, respectively, rate constants for the reaction with OH of 7.12 × 10−12, 8.42 × 10−12, and 9.70 × 10−12 molecule−1 cm3s−1. The following rate constants were obtained in units of 10−12 molecule−1 cm3s−1; isopropyl acetate, (3.12 ± 0.29); n-propyl acetate, (1.97 ± 0.24); isopropenyl acetate, (62.53 ± 1.24); n-propenyl acetate, (24.57 ± 0.24); n-butyl acetate, (3.29 ± 0.35); and ethyl butyrate, (4.37 ± 0.42). Tertiary butyl acetate has a low reactivity with OH radicals (<1 × 10−12 molecule−1 cm3s−1). © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Rate coefficients have been measured for the reactions of Cl atoms with methanol (k1) and acetaldehyde (k2) using both absolute (laser photolysis with resonance fluorescence) and relative rate methods at 295 ± 2 K. The measured rate coefficients were (units of 10−11 cm3 molecule−1 s−1): absolute method, k1 = (5.1 ± 0.4), k2 = (7.3 ± 0.7); relative method k1 = (5.6 ± 0.6), k2 = (8.4 ± 1.0). Based on a critical evaluation of the literature data, the following rate coefficients are recommended: k1 = (5.4 ± 0.9) × 10−11 and k2 = (7.8 ± 1.3) × 10−11 cm3 molecule−1 s−1 (95% confidence limits). The results significantly improve the confidence in the database for reactions of Cl atoms with these oxygenated organics. Rate coefficients were also measured for the reactions of Cl2 with CH2OH, k5 = (2.9 ± 0.6) × 10−11 and CH3CO, k6 = (4.3 ± 1.5) × 10−11 cm3 molecule−1 s−1, by observing the regeneration of Cl atoms in the absence of O2. Based on these results and those from a previous relative rate study, the rate coefficient for CH3CO + O2 at the high pressure limit is estimated to be (5.7 ± 1.9) × 10−12 cm3 molecule−1 s−1. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 776–784, 1999  相似文献   

13.
Rate coefficients for the reactions of OH with n, s, and iso-butanol have been measured over the temperature range 298 to ∼650 K. The rate coefficients display significant curvature over this temperature range and bridge the gap between previous low-temperature measurements with a negative temperature dependence and higher temperature shock tube measurements that have a positive temperature dependence. In combination with literature data, the following parameterizations are recommended: k1,OH + n-butanol(T) = (3.8 ± 10.4) × 10−19T2.48 ± 0.37exp ((840 ± 161)/T) cm3 molecule−1 s−1 k2,OH + s-butanol(T) = (3.5 ± 3.0) × 10−20T2.76 ± 0.12exp ((1085 ± 55)/T) cm3 molecule−1 s−1 k3,OH + i-butanol(T) = (5.1 ± 5.3) × 10−20T2.72 ± 0.14exp ((1059 ± 66)/T) cm3 molecule−1 s−1 k4,OH + t-butanol(T) = (8.8 ± 10.4) × 10−22T3.24 ± 0.15exp ((711 ± 83)/T) cm3 molecule−1 s−1 Comparison of the current data with the higher shock tube measurements suggests that at temperatures of ∼1000 K, the OH yields, primarily from decomposition of β-hydroxyperoxy radicals, are ∼0.3 (n-butanol), ∼0.3 (s-butanol) and ∼0.2 (iso-butanol) with β-hydroxyperoxy decompositions generating OH, and a butene as the main products. The data suggest that decomposition of β-hydroxyperoxy radicals predominantly occurs via OH elimination.  相似文献   

14.
The rate constant for the reaction of the hydroxyl radical with 1,1,1,3,3-pentafluorobutane (HFC-365mfc) has been determined over the temperature range 278–323K using a relative rate technique. The results provide a value of k(OH+CF3CH2CF2CH3)=2.0×10−12exp(−1750±400/T) cm3 molecule−1 s−1 based on k(OH+CH3CCl3)=1.8×10−12 exp (−1550±150/T) cm3 molecule−1 s−1 for the rate constant of the reference reaction. Assuming the major atmospheric removal process is via reaction with OH in the troposphere, the rate constant data from this work gives an estimate of 10.8 years for the tropospheric lifetime of HFC-365mfc. The overall atmospheric lifetime obtained by taking into account a minor contribution from degradation in the stratosphere, is estimated to be 10.2 years. The rate constant for the reaction of Cl atoms with 1,1,1,3,3-pentafluorobutane was also determined at 298±2 K using the relative rate method, k(Cl+CF3CH2CF2CH3)=(1.1±0.3)×10−15 cm3 molecule−1 s−1. The chlorine initiated photooxidation of CF3CH2CF2CH3 was investigated from 273–330 K and as a function of O2 pressure at 1 atmosphere total pressure using Fourier transform infrared spectroscopy. Under all conditions the major carbon-containing products were CF2O and CO2, with smaller amounts of CF3O3CF3. In order to ascertain the relative importance of hydrogen abstraction from the (SINGLE BOND)CH2(SINGLE BOND) and (SINGLE BOND)CH3 groups in CF3CH2CF2CH3, rate constants for the reaction of OH radicals and Cl atoms with the structurally similar compounds CF3CH2CCl2F and CF3CH2CF3 were also determined at 298 K k(OH+CF3CH2CCl2F)=(8±3)×10−16 cm3 molecule−1 s−1; k(OH+CF3CH2CF3)=(3.5±1.5)×10−16 cm3 molecule−1 s−1; k(Cl+CF3CH2CCl2F)=(3.5±1.5)×10−17 cm3 molecule−1 s−1]; k(Cl+CF3CH2CF3)<1×10−17 cm3 molecule−1 s−1. The results indicate that the most probable site for H-atom abstraction from CF3CH2CF2CH3 is the methyl group and that the formation of carbonyl compounds containing more than a single carbon atom will be negligible under atmospheric conditions, carbonyl difluoride and carbon dioxide being the main degradation products. Finally, accurate infrared absorption cross-sections have been measured for CF3CH2CF2CH3, and jointly used with the calculated overall atmospheric lifetime of 10.2 years, in the NCAR chemical-radiative model, to determine the radiative forcing of climate by this CFC alternative. The steady-state Halocarbon Global Warming Potential, relative to CFC-11, is 0.17. The Global Warming Potentials relative to CO2 are found to be 2210, 790, and 250, for integration time-horizons of 20, 100, and 500 years, respectively. © 1997 John Wiley & Sons, Inc.  相似文献   

15.
Using a relative rate method, rate constants have been measured for the gas-phase reactions of the OH radical with 1-hexanol, 1-methoxy-2-propanol, 2-butoxyethanol, 1,2-ethanediol, and 1,2-propanediol at 296±2 K, of (in units of 10−12 cm3 molecule−1 s−1): 15.8±3.5; 20.9±3.1; 29.4±4.3; 14.7±2.6; and 21.5±4.0, respectively, where the error limits include the estimated overall uncertainties in the rate constants for the reference compounds. These OH radical reaction rate constants are higher than certain of the literature values, by up to a factor of 2. Rate constants were also measured for the reactions of 1-methoxy-2-propanol and 2-butoxyethanol with NO3 radicals and O3, with respective NO3 radical and O3 reaction rate constants (in cm3 molecule−1 s−1 units) of: 1-methoxy-2-propanol, (1.7±0.7)×10−15, and <1.1×10−19; and 2-butoxyethanol, (3.0±1.2)×10−15, and <1.1×10−19. The dominant tropospheric loss process for the alcohols, glycols, and glycol ethers studied here is calculated to be by reaction with the OH radical, with lifetimes of 0.4–0.8 day for a 24 h average OH radical concentration of 1.0×106 molecule cm−3. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 533–540, 1998  相似文献   

16.
The gas phase reaction of OH radicals with hydrogen iodide (HI) has been studied using a Laser Photolysis-Resonance Fluorescence (LP-RF) apparatus, recently developed in our group. The measured rate constant at 298 K was (2.7 ± 0.2) × 10−11 cm3 molecule−1 s−1. This rate constant is compared with the ones of the reactions OH + HCl and OH + HBr. The role of the reaction OH + HI in marine tropospheric chemistry is discussed. In addition, the LP-RF apparatus was tested and validated by measuring the following rate constants (in cm3 molecule−1 s−1 units): 𝓀(OH + HNO3) = (1.31 ± 0.06) × 10−13 at p = 27 and 50 Torr of argon and 𝓀(OH + C3H8) = (1.22 ± 0.08) × 10−12. These rate constants are in very good agreement with the literature data.  相似文献   

17.
Some relative rate experiments have been carried out at room temperature and at atmospheric pressure. This concerns the OH-oxidation of some oxygenated volatile organic compounds including methanol (k1), ethanol (k2), MTBE (k3), ethyl acetate (k4), n-propyl acetate (k5), isopropyl acetate (k6), n-butyl acetate (k7), isobutyl acetate (k8), and t-butyl acetate (k9). The experiments were performed in a Teflon-film bag smog chamber. The rate constants obtained are (in cm3 molecule−1 s−1): k1=(0.90±0.08)×10−12; k2=(3.88±0.11)×10−12; k3=(2.98±0.06)×10−12; k4=(1.73±0.20)×10−12; k5=(3.56±0.15)×10−12; k6=(3.97±0.18)×10−12; k7=(5.78±0.15)×10−12; k8=(6.77±0.30)×10−12; and k9=(0.56±0.11)×10−12. The agreement between the obtained rate constants and some previously published data has allowed for most of the studied compounds to point out a coherent group of values and to suggest recommended values. Atmospheric implications are also discussed. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 839–847, 1998  相似文献   

18.
The reaction of Cl atoms with a series of C2–C5 unsaturated hydrocarbons has been investigated at atmospheric pressure of 760 Torr over the temperature range 283–323 K in air and N2 diluents. The decay of the hydrocarbons was followed using a gas chromatograph with a flame ionization detector (GC‐FID), and the kinetic constants were determined using a relative rate technique with n‐hexane as a reference compound. The Cl atoms were generated by UV photolysis (λ ≥ 300 nm) of Cl2 molecules. The following absolute rate constants (in units of 10−11 cm3 molecule−1 s−1, with errors representing ±2σ) for the reaction at 295 ± 2 K have been derived from the relative rate constants combined to the value 34.5 × 10−11 cm3 molecule−1 s−1 for the Cl + n‐hexane reaction: ethene (9.3 ± 0.6), propyne (22.1 ± 0.3), propene (27.6 ± 0.6), 1‐butene (35.2 ± 0.7), and 1‐pentene (48.3 ± 0.8). The temperature dependence of the reactions can be expressed as simple Arrhenius expressions (in units of 10−11 cm3 molecule−1 s−1): kethene = (0.39 ± 0.22) × 10−11 exp{(226 ± 42)/T}, kpropyne = (4.1 ± 2.5) × 10−11 exp{(118 ± 45)/T}, kpropene = (1.6 ± 1.8) × 10−11 exp{(203 ± 79)/T}, k1‐butene = (1.1 ± 1.3) × 10−11 exp{(245 ± 90)/T}, and k1‐pentene = (4.0 ± 2.2) × 10−11 exp{(423 ± 68)/T}. The applicability of our results to tropospheric chemistry is discussed. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 478–484, 2000  相似文献   

19.
Long-path FTIR spectroscopy was used to study the kinetics and mechanism of the reaction of Cl atoms with CO in air. The relative rate constants at 298 K and 760 torr for the forward direction of the reaction of Cl with 13CO and the reaction of Cl13CO with O2 were k1 = (3.4 ± 0.8) × 10−14 cm3 molecule−1 s−1 and k2 = (4.3 ± 3.2) × 10−13 cm3 molecule−1 s−1, respectively (all uncertainty limits are 2σ). The rate constant for the net loss of 13CO due to reaction with Cl in 1 atm of air at 298 K was kCl+COobs = (3.0 ± 0.6) × 10−14 cm3 molecule−1 s−1. The only observed carbon-containing product of the Cl + 12CO reaction was 12CO2, with a yield of 109 ± 18%. Our results are in good agreement with extrapolations from previous studies. The reaction mechanism and the implications for laboratory studies and tropospheric chemistry are discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
Using relative rate techniques the reactions of chlorine and fluorine atoms with HC(O)F have been determined to proceed with rate constants of k1 = (1.9 ± 0.2) × 10−15 and k2 = (8.3 ± 1.7) × 10−13 cm3 molecule−1 s−1, respectively. Stated errors reflect statistical uncertainty; possible systematic uncertainties could add additional 10% and 20% ranges to the values of k1 and k2, respectively. Experiments were performed at 295 ± 2 K and 700 torr total pressure of air. The results are discussed with respect to the design and interpretation of laboratory studies of the atmospheric chemistry of CFC replacements. © 1997 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号