首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variational second order density matrix theory under "two-positivity" constraints tends to dissociate molecules into unphysical fractionally charged products with too low energies. We aim to construct a qualitatively correct potential energy surface for F(3)(-) by applying subspace energy constraints on mono- and diatomic subspaces of the molecular basis space. Monoatomic subspace constraints do not guarantee correct dissociation: the constraints are thus geometry dependent. Furthermore, the number of subspace constraints needed for correct dissociation does not grow linearly with the number of atoms. The subspace constraints do impose correct chemical properties in the dissociation limit and size-consistency, but the structure of the resulting second order density matrix method does not exactly correspond to a system of noninteracting units.  相似文献   

2.
A new Kohn-Sham formalism is developed for studying the lowest molecular electronic states of given space and spin symmetry whose densities are represented by weighted sums of several reference configurations. Unlike standard spin-density functional theory, the new formalism uses total spin conserving spin-density operators and spin-invariant density matrices so that the method is fully spin-adapted and solves the so-called spin-symmetry dilemma. The formalism permits the use of an arbitrary set of reference (noninteracting) configurations with any number of open shells. It is shown that the requirement of degeneracy of the total noninteracting energies of the reference configurations (or configuration state functions) is equivalent to the stationary condition of the exact energy relative to the weights of the configurations (or configuration state functions). Consequently, at any molecular geometry, the weights can be determined by minimization of the energy, and, for given reference weights, the Kohn-Sham orbitals can be determined. From this viewpoint, the developed theory can be interpreted as an analog of the multiconfiguration self-consistent field approach within density functional theory.  相似文献   

3.
4.
Studying non-adiabatic effects in molecular dynamics simulations and modeling their optical signatures in linear and non-linear spectroscopies calls for electronic structure calculations in a situation when the ground state is degenerate or almost degenerate. Such degeneracy causes serious problems in invoking single Slater determinant Hartree–Fock (HF) and density functional theory (DFT) methods. To resolve this problem, we develop a generalization of time-dependent (dynamical) variational approach which accounts for the degenerate or almost degenerate ground state structure. Specifically, we propose a ground state ansatz for the subspace of generalized electronic configurations spanned on the degenerate grounds state multi-electron wavefunctions. Further employing the invariant form of Hamilton dynamics we arrive with the classical equations of motion describing the time-evolution of this subspace in the vicinity of the stationary point. The developed approach can be used for accurate calculations of molecular excited states and electronic spectra in the degenerate case.  相似文献   

5.
The electronic spectrum of the neutral nickel complex [Ni(LISQ)2] (LISQ = 3,5‐di‐tert‐butyl‐o‐diiminobenzosemiquinonate(1?)) and the spectra of its anion and dication have been calculated by means of time‐dependent density functional theory. The electronic ground state of the neutral complex exhibits an open shell singlet diradical character. The mandatory multireference problem for this electronic ground state has been treated approximately by using the unrestricted and spin symmetry broken Kohn‐Sham Slater determinant as the wave function for the noninteracting reference system in the time‐dependent density functional calculations. A reasonable agreement with observed transition energies and band intensities has been achieved. This holds also for the long wavelength transitions that are shown to be of charge transfer type. The charge distributions in the electronic ground state and the corresponding low lying excited states, however, are rather similar. Thus, the known failure of standard time‐dependent density functional theory to describe improperly long range charge transfer transitions is absent in this work. The applied computational scheme might be adequate for calculating electronic spectra of transition metal complexes with noninnocent ligands. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

6.
The evaluation of in density functional theory (DFT) is considered. Wang et al. [J. Chem. Phys. 102, 3477 (1995)] have derived an approximate, local density expression for and in the present study their formula is evaluated using densities from unrestricted Hartree-Fock (UHF) and a range of DFT exchange-correlation functionals. The results are compared with those obtained by evaluating the conventional UHF expression using the Kohn-Sham orbitals, which is appropriate for the noninteracting system. A generalized gradient approximation for is then proposed and investigated.  相似文献   

7.
"Rung 3.5" exchange-correlation functionals for Kohn-Sham density functional theory depend linearly on the nonlocal one-particle density matrix of the noninteracting Kohn-Sham reference system. Rung 3.5 functionals also require a semilocal model for the one-particle density matrix. This work presents new model density matrices for Rung 3.5 functionals. The resulting functionals give reasonable predictions for total energies, molecular thermochemistry and kinetics, odd-electron bonds, and conjugated polymer bandgaps. Global-hybrid-like combinations of semilocal and Rung 3.5 exchange, and empirical density matrix models, also show promise.  相似文献   

8.
Entropic uncertainty and statistical correlation measures, based on survival and cumulative densities, are explored in some representative quantum systems. We illustrate how the cumulative residual entropy in the quantum well system recovers the correct classical behavior for larger quantum numbers while the Shannon entropy does not. Two interacting and noninteracting oscillators are used to examine two‐particle entropies and their related correlation measures. The joint cumulative residual entropy does distinguish between symmetric and antisymmetric wave functions in interacting systems as the interaction is turned on. The joint Shannon entropy does not distinguish between the symmetries even in the presence of interaction. Conversely, the joint Shannon entropy and joint cumulative residual entropy are both unable to distinguish between the symmetries for certain states of the noninteracting oscillators. As measures of statistical correlation, the mutual information and the cross cumulative residual entropy yield similar behaviors as a function of the strength of the interparticle interaction.  相似文献   

9.
In local effective potential energy theories such as the Hohenberg-Kohn-Sham density functional theory (HKS-DFT) and quantal density functional theory (Q-DFT), electronic systems in their ground or excited states are mapped to model systems of noninteracting fermions with equivalent density. From these models, the equivalent total energy and ionization potential are also obtained. This paper concerns (i) the nonuniqueness of the local effective potential energy function of the model system in the mapping from a nondegenerate ground state, (ii) the nonuniqueness of the local effective potential energy function in the mapping from a nondegenerate excited state, and (iii) in the mapping to a model system in an excited state, the nonuniqueness of the model system wave function. According to nondegenerate ground state HKS-DFT, there exists only one local effective potential energy function, obtained as the functional derivative of the unique ground state energy functional, that can generate the ground state density. Since the theorems of ground state HKS-DFT cannot be generalized to nondegenerate excited states, there could exist different local potential energy functions that generate the excited state density. The constrained-search version of HKS-DFT selects one of these functions as the functional derivative of a bidensity energy functional. In this paper, the authors show via Q-DFT that there exist an infinite number of local potential energy functions that can generate both the nondegenerate ground and excited state densities of an interacting system. This is accomplished by constructing model systems in configurations different from those of the interacting system. Further, they prove that the difference between the various potential energy functions lies solely in their correlation-kinetic contributions. The component of these functions due to the Pauli exclusion principle and Coulomb repulsion remains the same. The existence of the different potential energy functions as viewed from the perspective of Q-DFT reaffirms that there can be no equivalent to the ground state HKS-DFT theorems for excited states. Additionally, the lack of such theorems for excited states is attributable to correlation-kinetic effects. Finally, they show that in the mapping to a model system in an excited state, there is a nonuniqueness of the model system wave function. Different wave functions lead to the same density, each thereby satisfying the sole requirement of reproducing the interacting system density. Examples of the nonuniqueness of the potential energy functions for the mapping from both ground and excited states and the nonuniqueness of the wave function are provided for the exactly solvable Hooke's atom. The work of others is also discussed.  相似文献   

10.
The local-scaling transformation version of density functional theory (LS-DFT ) is reviewed. It is shown that in the context of LS-DFT it is possible to construct N-representable energy density functionals and that the theory provides systematic ways for calculating strict upper bounds to the exact energies. The importance of the concept of “orbit” in LS-DFT is indicated and several approaches leading to intraorbit and interorbit optimization are discussed. Results of the application of these optimization procedures to the determination of upper bounds for the ground-state energy of the beryllium atom are given. Also, numerical results are reported on the use of local scaling transformations for the direct solution of the Kohn-Sham equations via the density-constrained minimization of the kinetic energy of a noninteracting system. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
A linear-scaling implementation of Hartree-Fock and Kohn-Sham self-consistent field theories for the calculation of frequency-dependent molecular response properties and excitation energies is presented, based on a nonredundant exponential parametrization of the one-electron density matrix in the atomic-orbital basis, avoiding the use of canonical orbitals. The response equations are solved iteratively, by an atomic-orbital subspace method equivalent to that of molecular-orbital theory. Important features of the subspace method are the use of paired trial vectors (to preserve the algebraic structure of the response equations), a nondiagonal preconditioner (for rapid convergence), and the generation of good initial guesses (for robust solution). As a result, the performance of the iterative method is the same as in canonical molecular-orbital theory, with five to ten iterations needed for convergence. As in traditional direct Hartree-Fock and Kohn-Sham theories, the calculations are dominated by the construction of the effective Fock/Kohn-Sham matrix, once in each iteration. Linear complexity is achieved by using sparse-matrix algebra, as illustrated in calculations of excitation energies and frequency-dependent polarizabilities of polyalanine peptides containing up to 1400 atoms.  相似文献   

12.
We study the mapping between time-dependent densities and potentials for noninteracting electronic systems on lattices. As discovered recently by Baer [J. Chem. Phys. 128, 044103 (2008)], there exist well-behaved time-dependent density functions on lattices which cannot be associated with any real time-dependent potential. This breakdown of time-dependent V-representability can be tracked down to problems with the continuity equation which arise from discretization of the kinetic-energy operator. Examples are given for lattices with two points and with N points, and implications for practical numerical applications of time-dependent density-functional theory are discussed. In the continuum limit, time-dependent noninteracting V-representability is restored.  相似文献   

13.
A new computerized method for locating conical intersections of interest in photochemistry is presented. The search is based on the Longuet-Higgins phase change theorem (Berry phase) which provides the subspace required for the initial search. The subspace is approximated as a plane containing three stable structures lying on a Longuet-Higgins loop. The search is conducted for a minimum of ΔE, the energy difference between two electronic states. It is started using up to three points within the circle defined by the three structures; symmetry, if relevant, is helpful but not essential. Since a two-dimensional subspace of the large 3N − 6 space is used, the search that uses either Cartesian or internal coordinates is efficient and yields a degeneracy after a few iterations. Given that not all degrees of freedom are included in the search, usually a high lying part of the conical intersection is initially located. The system is subsequently optimized along all coordinates keeping ΔE as close to zero as desired. The method is demonstrated for the symmetric H3 system and also for the butadiene–cyclobutene–bicyclobutane system in which the three stable structures are not equivalent. The method is general and can be extended to any photochemical system.  相似文献   

14.
This article summarizes our investigations of tethered chain systems using Langmuir monolayers of poly(dimethylsiloxane)‐polystyrene (PDMS‐PS) diblock copolymers on organic liquids. In this system, the PDMS block adsorbs strongly to the air surface while the PS block dangles into the subphase liquid. The air surface can be made either repulsive or attractive for the tethered PS chain segments by choosing a subphase liquid which has a surface tension less than or greater than that of PS, respectively. The segment profile of the PS block is determined by neutron reflection as a function of the surface density, the molecular weights of the PS and PDMS blocks, and the solution conditions. We cover the range of reduced surface density (Σ ) characteristic of the large body of data in the literature for systems of chains tethered onto solid surfaces from dilute solution in good or theta solvent conditions (Σ < 12). We emphasize quantitative comparisons with analytical profile forms and scaling predictions. We find that the strong‐stretching limit assumed in analytical self‐consistent field calculations (SCF) and scaling theories is not valid over this Σ range. On the other hand, over a large portion of this range (Σ ⪇ 5) tethered chain profiles are well described by a renormalization group theory for weakly interacting or noninteracting chains. Simultaneous with the study of the profile form, the free energy of the tethered chains is examined through the surface tension. A strong increase in the surface pressure is observed with increasing surface density which determines the maximum surface density which can be achieved. This effect is attributed to a combination of higher order osmotic interactions and configurational constraints. This effect may explain several outstanding discrepancies regarding the adsorption of end‐functionalized chains and diblock copolymers onto solid surfaces.  相似文献   

15.
基于自旋非限制HartreeFock理论,发展了自旋非限制多组态含时HartreeFock理论方法来研究激光场中的多电子相关动力学.自旋向上和自旋向下的自旋轨道分别在他们各自的子空间内传播;并通过约化密度矩阵和平均场算符相互作用.分别利用了自旋限制和非限制的多组态含时HartreeFock方法虚时和实时传播计算氦原子基态能量和电离几率.自旋非限制的计算结果与其他报道相吻合.  相似文献   

16.
Time-dependent density functional theory (TDDFT) has recently been extended to describe many-body open quantum systems evolving under nonunitary dynamics according to a quantum master equation. In the master equation approach, electronic excitation spectra are broadened and shifted due to relaxation and dephasing of the electronic degrees of freedom by the surrounding environment. In this paper, we develop a formulation of TDDFT linear-response theory (LR-TDDFT) for many-body electronic systems evolving under a master equation, yielding broadened excitation spectra. This is done by mapping an interacting open quantum system onto a noninteracting open Kohn-Sham system yielding the correct nonequilibrium density evolution. A pseudoeigenvalue equation analogous to the Casida equations of the usual LR-TDDFT is derived for the Redfield master equation, yielding complex energies and Lamb shifts. As a simple demonstration, we calculate the spectrum of a C(2 +) atom including natural linewidths, by treating the electromagnetic field vacuum as a photon bath. The performance of an adiabatic exchange-correlation kernel is analyzed and a first-order frequency-dependent correction to the bare Kohn-Sham linewidth based on the Go?rling-Levy perturbation theory is calculated.  相似文献   

17.
The theory of vibrations of a composite particle when vibrational amplitudes are not constrained to be small according to the Eckart conditions is developed using the methods of differential topology. A global classical Hamiltonian appropriate for this system is given, and for the case of the molecular vibration–rotation problem, it is transformed into a global quantum Hamiltonian operator. It is shown that the zeroth-order term in the global Hamiltonian operator is identical to the Wilson–Howard Hamiltonian; higher-order terms are shown to give successively better approximations to the large amplitude problem. Generalized Eckart conditions are derived for the global classical Hamiltonian; the quantum equivalent of these conditions along with the quantum equivalent of the Eckart conditions are given. The spectrum of the global Hamiltonian operator is discussed and it is shown that the calculation of the vibration–rotation energy states of the system reduces to the same straight-forward procedure, the solution of a secular determinant, as was carried out for the Wilson–Howard Hamiltonian at a later time by Nielsen.  相似文献   

18.
A fully statistical kernel describing the probability of energy transfer in collisions between polyatomic reactant (A) and heat bath (M) molecules in a thermal system is developed, proceeding through the formation of an intermediate collision complex (AM) whose internal degrees of freedom are assumed to exchange energy. After pointing out that this kernel does not give a quantitatively useful answer, the kernel is modified by introducing the concept that the collision complex lifetime is due to orbiting collisions, and that the (AM) lifetime must equal collision duration. This puts two constraints on the internal degrees of freedom of (AM): (1) those that correlate with relative translation and intrinsic rotation of separated A and M (= transitional modes) can contain only an amount of energy not exceeding E*, which is the maximum energy for which orbiting can occur; (2) those that correlate with internal degrees of freedom of M must have a density of states such that, subject to constraint (1), the lifetime of (AM) is equal to collision duration. It turns out, quite unambiguously, that the appropriate density of states is equivalent to just one oscillator of M participating in energy exchange. Calculations of average amount of energy transferred (Δ E>) in the system CH3NC + M show good quantitative agreement with experiment for both polar and non-polar M. The modified theory does not give any appreciable dependence of Δ E> on the size of M because collision duration is assumed to depend only on the long-range part of the potential.  相似文献   

19.
Elegant expressions are derived for the computation of dipole and quadrupole moments of molecules using the electrostatic potential and electric field evaluated on an oriented molecular surface. These expressions are implemented for Hirshfeld surfaces, applied to various molecular crystals, and compared with the results from the quantum theory of atoms in molecules. The effect of intermolecular interactions is also explored by examining the differences between electrostatic moments derived from a periodic Hartree-Fock electron density and an electron density resulting from a superposition of noninteracting molecules. The enhancement of the dipole moment for hydrogen bonded molecular crystals is typically 30%-40% and shown to be largely independent of the partitioning scheme. Dipole moments calculated from Hirshfeld surfaces systematically underestimate those from zero-flux surfaces, a result attributed to the translation of the Hirshfeld surface relative to the zero-flux surfaces for these molecules. For acetylene and benzene, the differences between a crystal calculation and the sum of noninteracting molecules are small, and both partitioning schemes yield quadrupole and second moment results in close agreement.  相似文献   

20.
Two different macrospopic pieces of copper have different external potentials and, because of the unique functional relationship between the electron density and the external potential as demanded by density functional theory, should possess different electron density distributions. Experimentally, however, an atom in the bulk exhibits the same electron density in both samples and they possess identical sets of intensive properties. Density functional theory does not account for the fundamental observation underlying the theory of atoms in molecules: that what are apparently identical distributions of charge can be observed for an atom or a grouping of atoms in systems with different external potentials and that these atoms contribute essentially identical amounts to the energies and all other properties of the systems in which they occur. It is shown that, unlike the external potential, the kinetic energy density and the potential energy density, defined by the virial of the Ehrenfest force acting on electron density, are short-range functions. As recorded in the first article on atoms in molecules, they exhibit a local dependence on the electron density that causes them to faithfully mimic the transferability of the atomic charge distributions from one system to another. The electron, the kinetic energy, and the virial densities are all determined directly by the one-electron density matrix, a function termed near-sighted by Professor Kohn. It is this near-sighted property of the one-matrix that underlies the working hypothesis of chemistry—that of a functional group exhibiting a characteristic set of properties. The observations obtained from the theory of atoms in molecules and the atomic theorems it determines demonstrate the existence of a local relationship between the electron density and all properties of a system. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号