首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transplantation of neural precursor cells (NPCs) is known to be a promising approach to ameliorating behavioral deficits after stroke in a rodent model of middle cerebral artery occlusion (MCAo). Previous studies have shown that transplanted NPCs migrate toward the infarct region, survive and differentiate into mature neurons to some extent. However, the spatiotemporal dynamics of NPC migration following transplantation into stroke animals have yet to be elucidated. In this study, we investigated the fates of human embryonic stem cell (hESC)-derived NPCs (ENStem-A) for 8 weeks following transplantation into the side contralateral to the infarct region using 7.0T animal magnetic resonance imaging (MRI). T2- and T2*-weighted MRI analyses indicated that the migrating cells were clearly detectable at the infarct boundary zone by 1 week, and the intensity of the MRI signals robustly increased within 4 weeks after transplantation. Afterwards, the signals were slightly increased or unchanged. At 8 weeks, we performed Prussian blue staining and immunohistochemical staining using human-specific markers, and found that high percentages of transplanted cells migrated to the infarct boundary. Most of these cells were CXCR4-positive. We also observed that the migrating cells expressed markers for various stages of neural differentiation, including Nestin, Tuj1, NeuN, TH, DARPP-32 and SV38, indicating that the transplanted cells may partially contribute to the reconstruction of the damaged neural tissues after stroke. Interestingly, we found that the extent of gliosis (glial fibrillary acidic protein-positive cells) and apoptosis (TUNEL-positive cells) were significantly decreased in the cell-transplanted group, suggesting that hESC-NPCs have a positive role in reducing glia scar formation and cell death after stroke. No tumors formed in our study. We also performed various behavioral tests, including rotarod, stepping and modified neurological severity score tests, and found that the transplanted animals exhibited significant improvements in sensorimotor functions during the 8 weeks after transplantation. Taken together, these results strongly suggest that hESC-NPCs have the capacity to migrate to the infarct region, form neural tissues efficiently and contribute to behavioral recovery in a rodent model of ischemic stroke.  相似文献   

2.
3.
NANOG plays a key role in cellular plasticity and the acquisition of the stem cell state during reprogramming, but its role in the regenerative process remains unclear. Here, we show that the induction of NANOG in neuronal cells is necessary for the physiological initiation of neuronal regeneration in response to ischemic stress. Specifically, we found that NANOG was preferentially expressed in undifferentiated neuronal cells, and forced expression of Nanog in neural progenitor cells (NPCs) promoted their self-renewing expansion both in ex-vivo slice cultures and in vitro limiting dilution analysis. Notably, the upstream region of the Nanog gene contains sequence motifs for hypoxia-inducible factor-1 alpha (HIF-1α). Therefore, cerebral neurons exposed to hypoxia significantly upregulated NANOG expression selectively in primitive (CD133+) cells, but not in mature cells, leading to the expansion of NPCs. Notably, up to 80% of the neuronal expansion induced by hypoxia was attributed to NANOG-expressing neuronal cells, whereas knockdown during hypoxia abolished this expansion and was accompanied by the downregulation of other pluripotency-related genes. Moreover, the number of NANOG-expressing neuronal cells were transiently increased in response to ischemic insult, predominantly in the infarct area of brain regions undergoing neurogenesis, but not in non-neurogenic loci. Together, these findings reveal a functional effect of NANOG-induction for the initiation of adaptive neuronal regeneration among heterogeneous NPC subsets, pointing to cellular plasticity as a potential link between regeneration and reprogramming processes.Subject terms: Stem-cell research, Experimental models of disease  相似文献   

4.
The amyloid-β peptide (1–42) (Aβ42) can provide high diagnostic accuracy for the early diagnosis of Alzheimer's disease (AD). In this study, an immunosensor based on the peroxidase-like activity of heme-Aβ42 was designed for Aβ42 detection. The glassy carbon electrode (GCE) was electrodeposited Au particles (GCE/Au). The GCE/Au was modified using polythionine-methylene blue (PTH−MB), AuNPs, monoclonal antibody (anti-Aβ42), and bovine serum albumin (BSA), successively. The GCE/Au/PTH−MB/AuNPs/anti-Aβ42/BSA could competitively recognize Aβ42 and heme-Aβ42. The anchored heme-Aβ42 showed strong electrocatalytic activity between H2O2 and ferrocenemethanol. Under optimum conditions, we determined detection limits of 17.3 pM in PBS pH 7, 25.2 pM in serum, and 23.8 pM in saliva. The recovery ranged from 71.0 % to 117.8 %.  相似文献   

5.
Cytotoxicity of A β with redox active metals in neuronal cells has been implicated in the progression of Alzheimer’s disease (AD).Zn7MT-3 protects cell against Aβ-Cu2+ toxicity.The roles of single domain proteins(α/β) andα-βdomain-domain interaction of Zn7MT-3 in its anti-Aβ1-42-Cu2+ toxicity activity were investigated herein.Aβ1-42 and four mutants of human MT3 (α/βdomain,β(MT3)-α(MTl) and A31-34) were prepared and characterized.Aβ1-42-Cu2+ induced hydroxyl radical and ROS production with/without Zn-MTs were measured by fluorescence spectroscopy and DCFH-DA in living cells,respectively.These results indicate that the two domains form a co-operative unit and each of them is indispensable in conducting its bioactivity.  相似文献   

6.
7.
《中国化学快报》2020,31(7):1881-1886
To improve aqueous solubility and anti-ischemic activity of 3-n-butylphthalide (NBP), we designed and synthesized the ring-opened derivative of NBP-ferulic acid-glucose trihybrids (S1-S8). These hybrids inhibited adenosine diphosphate (ADP)- or arachidonic acid (AA)-induced platelet aggregation, among them, S2 was 30-fold more water-soluble, and over 10-fold more potent in inhibition of platelet aggregation, as well as reduced ROS generation and protected primary neuronal cells from OGD/R-induced damage, in comparison with NBP. Additionally, S2 was more active than its three moieties alone or in combination, suggesting that the activity of S2 may be attributed to the synergistic effects of these moieties. Importantly, in vivo studies indicated that S2 not only possessed good pharmacokinetic profile, but also improved NBP distribution in rodent brain, suggesting that the glucose moiety in S2 may be recognized by glucose transporter 1 (GLUT1) on blood-brain barrier (BBB), promoting it to penetrate through BBB. Our findings suggest that S2 may be a promising candidate for the intervention of ischemic stroke, warranting further study.  相似文献   

8.
An ischemic stroke is brain damage caused by interruption of blood supply to the brain that can cause death and long-term disability. New medical strategies or therapies are urgently needed for ischemic stroke. Icaritin (ICT) is a metabolite of icariin (ICA), which are two active flavonoid components extracted from Herba epimedii and considered neuroprotective agents in animal models of Alzheimer’s disease and ischemic stroke. The therapeutic effect of ICT on ischemic still remains to be clarified. The aim of this study was to investigate the therapeutic effect of ICT on cerebral ischemia-reperfusion-associated senescence and apoptosis in a middle cerebral artery occlusion (MCAO) mouse model (ischemia for 50 min and reperfusion for 24 h). Administration of ICT after ischemia significantly reduced MCAO-induced neurological damage, infarct volume, and histopathological changes in the brain of acute ischemic stroke mice. ICT treatment could also reduce neuronal apoptosis and senescence and reversed the expression of apoptosis- and senescence-related signaling proteins. These findings suggest that ICT may have therapeutic potential to ameliorate acute ischemic stroke.  相似文献   

9.
The adenosine A2A receptor antagonist SCH58261 has been reported to have anti-inflammatory effects. However, its role in chronic periodontitis (CP)-induced cognitive impairment, which is associated with Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS), remains unclear. This study investigated the role of SCH58261 in mice with CP-induced cognitive impairment. C57BL/6J mice were used to develop CP model by injecting 0.5 mg/kg P. gingivalis LPS into the palatal gingival sulcus of maxillary first molars twice a week for four weeks. The mice were divided into control, P. gingivalis LPS (P-LPS), P-LPS + SCH58261, and SCH58261 groups. The passive avoidance test (PAT) and Morris water maze (MWM) were used to assess cognition in mice. Furthermore, CD73/adenosine, neuroinflammation, glutamate transporters, and glutamate were assessed. Compared with the P-LPS group, 0.1 and 0.5 mg/kg SCH58261 increased latency and decreased error times in PAT, but increased platform crossing number in MWM. SCH58261 inhibited microglial activation, and decreased pro-inflammatory cytokines and glutamate levels, but increased GLT-1 and PSD95 expression in the hippocampus. This was the first report of SCH58261 treatment for CP-induced cognitive impairment, which may be related to its anti-inflammatory activities and anti-glutamate excitatory neurotoxicity. This suggests that SCH58261 can be used as a novel agent to treat cognitive impairment.  相似文献   

10.
11.
The abnormal expression of circular RNAs (circRNAs) is associated with numerous human diseases. This study investigated the mechanism by which circRNA acts as competitive endogenous RNA in the regulation of degenerative intervertebral disc disease (IVDD). Decreased expression of circSPG21 was detected in degenerated nucleus pulposus cells (NPCs), the function of circSPG21 in NPCs was explored and verified, and the downstream target of circSPG21 was investigated. The interaction between circSPG21 and miR-1197 and its target gene (ATP1B3) was studied by online database prediction and molecular biological verification. Finally, the circSPG21/miR-1197/ATP1B3 axis was verified in the mouse tail-looping model. The expression of circSPG21 in the nucleus pulposus in IVDD was directly related to an imbalance of anabolic and catabolic factors, which affected cell senescence. circSPG21 was found to play a role in human NPCs by acting as a sponge of miR-1197 and thereby affecting ATP1B3. The regulation of circSPG21 provides a potentially effective therapeutic strategy for IVDD.Subject terms: Mechanisms of disease, Long non-coding RNAs  相似文献   

12.
The stem bark extracts of Knema laurina inhibited the hydrogen peroxide (H2O2)- and aggregated amyloid β-peptide 1–42 length (Aβ1–42)-induced cell death in differentiated SH-SY5Y cells. Exposure of 250 μM H2O2 or 20 μM Aβ1–42 to the cells for 24 h reduced 50% of cell viability. Pretreatment of cells with ethyl acetate extract (EAE) or n-butanol extract (BE) at 300 μg/mL and then exposure to H2O2 protected the cells against the neurotoxic effects of H2O2. Besides, methanolic extract (ME) at 1 and 10 μg/mL exerted neuroprotective effect on Aβ1–42-induced toxicity to the cells. These results showed that EAE, BE and ME exhibited neuroprotective activities against H2O2- and Aβ1–42-induced cell death. Flavonoids (36) and β-sitosterol glucoside (8) were isolated from the EAE. Compound 1 was isolated from hexane extract, and compounds 2 and 7 were isolated from dichloromethane extract. All these observations provide the possible evidence for contribution in the neuroprotective effects.  相似文献   

13.
Stroke is a common disease and is the major cause of death and disability. It occurs and generates devastating neurological deficits when cerebral blood vessel is blocked(ischemic stroke, IS) or ruptured(hemorrhagic stroke, HS). Hydrogel, being biodegradable and biocompatible, have shown attractive advantages in stroke therapy as a new biomaterial with desirable mechanical properties and tunability of structure,owing to special ability to load different cargoes for multiple treatment strategies,...  相似文献   

14.
Current therapies for ischemic stroke are insufficient due to the lack of specific drugs. This study aimed to investigate the protective activity of polyphenol extracts from Terminalia chebula against cerebral ischemia-reperfusion induced damage. Polyphenols of ethyl acetate and n-butanol fractions were extracted from T. chebula. BV2 microglial cells exposed to oxygen-glucose deprivation/reoxygenation and mice subjected to middle cerebral artery occlusion/reperfusion were treated by TPE and TPB. Cell viability, cell morphology, apoptosis, mitochondrial membrane potential, enzyme activity and signaling pathway related to oxidative stress were observed. We found that TPE and TPB showed strong antioxidant activity in vitro. The protective effects of TPE and TPB on cerebral ischemia-reperfusion injury were demonstrated by enhanced antioxidant enzyme activities, elevated level of the nucleus transportation of nuclear factor erythroid 2-related factor 2 and expressions of antioxidant proteins, with a simultaneous reduction in cell apoptosis and reactive oxygen species level. In conclusion, TPE and TPB exert neuroprotective effects by stimulating the Nrf2 signaling pathway, thereby inhibiting apoptosis.  相似文献   

15.
Stem cell therapy is a promising approach to treat myocardial infarction. However, direct delivery of stem cells into hearts experiences poor cell engraftment and differentiation, due to ischemic conditions (low nutrient and oxygen) in the infarct hearts. Development of suitable cell carriers capable of supporting cell survival and differentiation under these harsh conditions is critical for improving the efficacy of current stem cell therapy. In this work, we created a family of novel cell carriers based on thermosensitive hydrogels and insulin-like growth factor 1 (IGF-1), and investigated if these cell carriers can improve cell survival and differentiation under ischemic conditions. The thermosensitive hydrogels were synthesized from N-isopropylacrylamide, acrylic acid, acrylic acid N-hydroxysuccinicimide ester, and 2-hydroxyethyl methacrylate-oligo(hydroxybutyrate). The hydrogel solutions can be readily injected through 26G needles, and can quickly solidify at 37 °C to form highly flexible hydrogels. IGF-1 was immobilized into the hydrogels in order to support long-term cell survival and differentiation. Different amount of IGF-1 was immobilized by using hydrogels with different content of N-hydroxysuccinicimide ester groups. Cardiosphere derived cells were encapsulated in the hydrogels and cultured under ischemic conditions. The results demonstrated that a significant improvement of cell survival and differentiation was achieved after IGF-1 immobilization. These IGF-1 immobilized hydrogels have the potential to improve cell survival and differentiation in infarct hearts.  相似文献   

16.
In this study, we simultaneously measured nitric oxide (NO) and oxygen (O2) dynamics in the myocardium during myocardial ischemia-reperfusion (IR) utilizing sol-gel modified electrochemical NO and O2 microsensors. In addition, we attempted to clarify the correlation between NO release in the ischemic period and O2 restoration in the myocardium after reperfusion, comparing a control heart with a remote ischemic preconditioning (RIPC)-treated heart as an attractive strategy for myocardial protection. Rat hearts were randomly divided into two groups: a control group (n = 5) and an RIPC group (n = 5, with RIPC treatment). Myocardia that underwent RIPC treatment (182 ± 70 nM, p < 0.05) released more NO during the ischemic period than those of the control group (63 ± 41 nM). The restoration value of oxygen tension (pO2) in the RIPC group significantly increased and was restored to pre-ischemic levels (92.6 ± 36.8%); however, the pO2 of the control group did not increase throughout the reperfusion period (5.7 ± 7.5%, p = 0.001). Myocardial infarct size measurements revealed a significant decrease in cell death in the myocardium region of the RIPC group (41.44 ± 6.42%, p = 0.001) compared with the control group (60.05 ± 10.91%). As a result, we showed that the cardioprotective effect of RIPC could be attributed to endogenous NO production during the ischemic period, which subsequently promoted reoxygenation in post-ischemic myocardia during early reperfusion. Our results suggest that the promotion of endogenous formation during an ischemic episode might be helpful as a therapeutic strategy for protecting the myocardium from IR injury. Additionally, our NO and O2 perm-selective microsensors could be utilized to evaluate the effect of drug or treatment.  相似文献   

17.
The accumulation and deposition of β-amyloid (Aβ) plaques in the brain is considered a potential pathogenic mechanism underlying Alzheimer's disease (AD). Chiral l/d -FexCuySe nanoparticles (NPs) were fabricated that interfer with the self-assembly of Aβ42 monomers and trigger the Aβ42 fibrils in dense structures to become looser monomers under 808 nm near-infrared (NIR) illumination. d -FexCuySe NPs have a much higher affinity for Aβ42 fibrils than l -FexCuySe NPs and chiral Cu2−xSe NPs. The chiral FexCuySe NPs also generate more reactive oxygen species (ROS) than chiral Cu2−xSe NPs under NIR-light irradiation. In living MN9D cells, d -NPs attenuate the adhesion of Aβ42 to membranes and neuron loss after NIR treatment within 10 min without the photothermal effect. In-vivo experiments showed that d -FexCuySe NPs provide an efficient protection against neuronal damage induced by the deposition of Aβ42 and alleviate symptoms in a mouse model of AD, leading to the recovery of cognitive competence.  相似文献   

18.
In this work, stabilized Al-substituted α-Ni(OH)2 materials were successfully synthesized by a chemical coprecipitation method. The experimental results showed that the 7.5% Al-substituted α-Ni(OH)2 materials exhibited high specific capacitance (2.08?×?103 F/g) and excellent rate capability due to the high stability of Al-substituted α-Ni(OH)2 structures in alkaline media, suggesting its potential application in electrode material for supercapacitors. To enhance energy density, an asymmetric type pseudo/electric double-layer capacitor was considered where α-Ni(OH)2 materials and activated carbon act as the positive and negative electrodes, respectively. Values for the maximum specific capacitance of 127 F/g and specific energy of 42 W·h/kg were demonstrated for a cell voltage between 0.4 and 1.6 V. By using the α-Ni(OH)2 electrode, the asymmetric supercapacitor exhibited high energy density and stable power characteristics. The hybrid supercapacitor also exhibited a good electrochemical stability with 82% of the initial capacitance over consecutive 1,000 cycle numbers.  相似文献   

19.
Lung cancer metastasis is a multifaceted process that accounts for 90% of cancer deaths. According to several studies, the epithelial–mesenchymal transition (EMT) plays an essential role in lung cancer metastasis. Therefore, this study aimed to investigate the potential pharmacological effect of cycloartocarpin on the suppression of metastasis-related behaviors and EMT. An MTT assay was used to examine cell viability. Cell migration was determined using a wound healing assay. Anchorage-independent cell growth was also performed. Western blot analysis was used to identify the key signaling proteins involved in the regulation of EMT and migration. The results found that non-toxic concentrations of cycloartocarpin (10–20 μM) effectively suppressed cell migration and attenuated anchorage-independent growth in H292, A549, and H460 cells. Interestingly, these effects were consistent with the findings of Western blot analysis, which revealed that the level of phosphorylated focal adhesion kinase (p-FAK), phosphorylated ATP-dependent tyrosine kinase (p-AKT), and cell division cycle 42 (Cdc42) were significantly reduced, resulting in the inhibition of the EMT process, as evidenced by decreased N-cadherin, vimentin, and slug expression. Taken together, the results suggest that cycloartocarpin inhibits EMT by suppressing the FAK/AKT signaling pathway, which is involved in Cdc42 attenuation. Our findings demonstrated that cycloartocarpin has antimetastatic potential for further research and development in lung cancer therapy.  相似文献   

20.
A novel water-soluble isopeptide of Alzheimer's disease-related peptide Aβ1-42, `26-O-acyl isoAβ1-42', which could efficiently convert to intact Aβ1-42 under physiological conditions via O-N intramolecular acyl migration, was synthesized providing a new system useful for investigation of biological function of Aβ1-42.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号