首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
An unstructured non‐nested multigrid method is presented for efficient simulation of unsteady incompressible Navier–Stokes flows. The Navier–Stokes solver is based on the artificial compressibility approach and a higher‐order characteristics‐based finite‐volume scheme on unstructured grids. Unsteady flow is calculated with an implicit dual time stepping scheme. For efficient computation of unsteady viscous flows over complex geometries, an unstructured multigrid method is developed to speed up the convergence rate of the dual time stepping calculation. The multigrid method is used to simulate the steady and unsteady incompressible viscous flows over a circular cylinder for validation and performance evaluation purposes. It is found that the multigrid method with three levels of grids results in a 75% reduction in CPU time for the steady flow calculation and 55% reduction for the unsteady flow calculation, compared with its single grid counterparts. The results obtained are compared with numerical solutions obtained by other researchers as well as experimental measurements wherever available and good agreements are obtained. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
A hybrid approach to couple finite difference method (FDM) with finite particle method (FPM) (ie, FDM-FPM) is developed to simulate viscous incompressible flows. FDM is a grid-based method that is convenient for implementing multiple or adaptive resolutions and is computationally efficient. FPM is an improved smoothed particle hydrodynamics (SPH), which is widely used in modeling fluid flows with free surfaces and complex boundaries. The proposed FDM-FPM leverages their advantages and is appealing in modeling viscous incompressible flows to balance accuracy and efficiency. In order to exchange the interface information between FDM and FPM for achieving consistency, stability, and convergence, a transition region is created in the particle region to maintain the stability of the interface between two methods. The mass flux algorithm is defined to control the particle creation and deletion. The mass is updated by N-S equations instead of the interpolation. In order to allow information exchange, an overlapping zone is defined near the interface. The information of overlapping zone is obtained by an FPM-type interpolation. Taylor-Green vortices and lid-driven shear cavity flows are simulated to test the accuracy and the conservation of the FDM-FPM hybrid approach. The standing waves and flows around NACA airfoils are further simulated to test the ability to deal with free surfaces and complex boundaries. The results show that FDM-FPM retains not only the high efficiency of FDM with multiple resolutions but also the ability of FPM in modeling free surfaces and complex boundaries.  相似文献   

3.
An incompressible Navier–Stokes solver using curvilinear body‐fitted collocated grid has been developed to solve unconfined flow past arbitrary two‐dimensional body geometries. In this solver, the full Navier–Stokes equations have been solved numerically in the physical plane itself without using any transformation to the computational plane. For the proper coupling of pressure and velocity field on collocated grid, a new scheme, designated ‘consistent flux reconstruction’ (CFR) scheme, has been developed. In this scheme, the cell face centre velocities are obtained explicitly by solving the momentum equations at the centre of the cell faces. The velocities at the cell centres are also updated explicitly by solving the momentum equations at the cell centres. By resorting to such a fully explicit treatment considerable simplification has been achieved compared to earlier approaches. In the present investigation the solver has been applied to unconfined flow past a square cylinder at zero and non‐zero incidence at low and moderate Reynolds numbers and reasonably good agreement has been obtained with results available from literature. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Within multivariant elements, which have restricted degrees of freedom at some nodes, different velocity components have different variations. Shape functions for the multivariant elements Q Po and R Po are developed. With such shape functions the value of a velocity component within a multivariant element is shown to depend upon all the independent components of velocity at the nodes of the element. The use of the Q1 P0 element to simulate flows with discontinuous boundary conditions generated disturbance throughout the flow domain, giving erroneous pressure and velocity distributions. The Q Po element restricted the disturbance due to such discontinuities to a small region near the singular points, whereas the P Po element completely eliminated the fluctuations. Flows with discontinuous boundary conditions were simulated with reasonable accuracy by partially relaxing the no-slip condition on the Q1 Po elements near the singular points.  相似文献   

6.
This paper proposes a hybrid vertex-centered finite volume/finite element method for solution of the two dimensional (2D) incompressible Navier-Stokes equations on unstructured grids.An incremental pressure fractional step method is adopted to handle the velocity-pressure coupling.The velocity and the pressure are collocated at the node of the vertex-centered control volume which is formed by joining the centroid of cells sharing the common vertex.For the temporal integration of the momentum equations,an implicit second-order scheme is utilized to enhance the computational stability and eliminate the time step limit due to the diffusion term.The momentum equations are discretized by the vertex-centered finite volume method (FVM) and the pressure Poisson equation is solved by the Galerkin finite element method (FEM).The momentum interpolation is used to damp out the spurious pressure wiggles.The test case with analytical solutions demonstrates second-order accuracy of the current hybrid scheme in time and space for both velocity and pressure.The classic test cases,the lid-driven cavity flow,the skew cavity flow and the backward-facing step flow,show that numerical results are in good agreement with the published benchmark solutions.  相似文献   

7.
This paper presents a new high‐order approach to the numerical solution of the incompressible Stokes and Navier–Stokes equations. The class of schemes developed is based upon a velocity–pressure–pressure gradient formulation, which allows: (i) high‐order finite difference stencils to be applied on non‐staggered grids; (ii) high‐order pressure gradient approximations to be made using standard Padé schemes, and (iii) a variety of boundary conditions to be incorporated in a natural manner. Results are presented in detail for a selection of two‐dimensional steady‐state test problems, using the fourth‐order scheme to demonstrate the accuracy and the robustness of the proposed methods. Furthermore, extensions to higher orders and time‐dependent problems are illustrated, whereas the extension to three‐dimensional problems is also discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
An efficient algorithm for hypersonic viscous flows   总被引:2,自引:0,他引:2  
The CSCM-S algorithm proposed by Lombard et al. is a very attractive tool for solving multidimensional Euler and Navier-Stokes equations. However, it is not economical due to the use of global sweeps in the whole computational domain. In this paper we suggest a modified strategy, which combines a single-marching technique for supersonic dominated region with a multi-sweep procedure for pure subsonic and complex flowfield. The new algorithm may save significantly CPU time and is more suitable for engineering applications. The project supported by National Natural Science Foundation of China  相似文献   

9.
We give a self-contained presentation of our macroelement technique for verifying the stability of finite element discretizations of the Navier–Stokes equations in the velocity–pressure formulation.  相似文献   

10.
This paper discusses the calculation of quasi-three-dimensional incompressible viscous flow by FEM. The Reynolds-averaged Navier-Stokes equations are solved in curvilinear co-ordinates by the reduced integration and penalty method (RIP). Streamline upwind artificial viscosity (SUAV) and the Baldwin-Lomax algebraic model of turbulence are used. Time discretization is by the general implicit θ-method.  相似文献   

11.
A 3D parallel overlapping scheme for viscous incompressible flow problems is presented that combines the finite element method, which is best suited for analysing flow in any arbitrarily shaped flow geometry, with the finite difference method, which is advantageous in terms of both computing time and computer storage. A modified ABMAC method is used as the solution algorithm, to which a sophisticated time integration scheme proposed by the present authors has been applied. Parallelization is based on the domain decomposition method. The RGB (recursive graph bisection) algorithm is used for the decomposition of the FEM mesh and simple slice decomposition is used for the FDM mesh. Some estimates of the parallel performance of FEM, FDM and overlapping computations are presented. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, four quadratic hexahedron elements are considered and assessed for analysis of an incompressible viscous flow underlying the mixed finite element method. We classify the investigated elements as multivariant and univariant finite elements. With the same number of pressure unknowns, multivariant elements are more constrained when the number of elements per side is larger than 10, as compared with that of continuous pressure elements. In multivariant eléments, the coding is complicated by the appearance of restricted degrees of freedom at mid-face and mid-edge nodes. The comparison consequently should be made via numerical example against the analytical problem.  相似文献   

13.
In this paper, a projection method is presented for solving the flow problems in domains with moving boundaries. In order to track the movement of the domain boundaries, arbitrary‐Lagrangian–Eulerian (ALE) co‐ordinates are used. The unsteady incompressible Navier–Stokes equations on the ALE co‐ordinates are solved by using a projection method developed in this paper. This projection method is based on the Bell's Godunov‐projection method. However, substantial changes are made so that this algorithm is capable of solving the ALE form of incompressible Navier–Stokes equations. Multi‐block structured grids are used to discretize the flow domains. The grid velocity is not explicitly computed; instead the volume change is used to account for the effect of grid movement. A new method is also proposed to compute the freestream capturing metrics so that the geometric conservation law (GCL) can be satisfied exactly in this algorithm. This projection method is also parallelized so that the state of the art high performance computers can be used to match the computation cost associated with the moving grid calculations. Several test cases are solved to verify the performance of this moving‐grid projection method. Copyright © 2004 John Wiley Sons, Ltd.  相似文献   

14.
We present a numerical procedure to eliminate internal nodes from elements designed to approximate incompressible flow problems. We compare six elements in academic and industrial like flow problem and we discuss their relative qualities. A surprising conclusion is that richer elements may behave less well than simple ones if a good enforcement of incompressibility is not maintained.  相似文献   

15.
A numerical method for predicting viscous flows in complex geometries has been presented. Integral mass and momentum conservation equations are deploved and these are discretized into algebraic form through numerical quadrature. The physical domain is divided into a number of non-orthogonal control volumes which are isoparametrically mapped on to standard rectangular cells. Numerical integration for unsteady mementum equations is performed over such non-orthogonal cells. The explicitly advanced velocity components obtained from unsteady momentum equations may not necessarily satisfy the mass conservation condition in each cell. Compliance of the mass conservation equation and the consequent evolution of correct pressure distribution are accomplished through an iterative correction of pressure and velocity till divergence-free condition is obtained in each cell. The algorithm is applied on a few test problems, namely, lid-driven square and oblique cavities, developing flow in a rectangular channel and flow over square and circular cylinders placed in rectangular channels. The results exhibit good accuracy and justify the applicability of the algorithm. This Explicit Transient Algorithm for Flows in Arbitrary Geometry is given a generic name EXTRAFLAG.  相似文献   

16.
A numerical scheme for time‐dependent incompressible viscous fluid flow, thermally coupled under the Boussinesq approximation is presented. The scheme combines an operator splitting in the time discretization and linear finite elements in the space discretization, and is an extension of one previously applied for isothermal incompressible viscous flow governed by the Navier–Stokes equations. To show the efficiency of the scheme, numerical results are presented for mixed convection, and natural convection at high Rayleigh numbers. Restricting the scheme to the isothermal case, some numerical results at high Reynolds numbers are included, i.e. the scheme is tested for a small viscosity and a large force term, which are not trivial tasks to deal with. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
Numerical modelling of convection suitable for cell-centred finite volume methods for incompressible flow is considered. Higher-order accurate and oscillation-free solutions are obtained through flux limiting, Two improvements are discussed: the enhancement of accuracy at smooth extrema of the TVD solution, and the construction of flux limiters, which is based on polynomial interpolants in the normalized variable space. Some implementation issues are outlined. Numerical examples are provided to illustrate these advancements.  相似文献   

18.
A finite element method for computing viscous incompressible flows based on the gauge formulation introduced in [Weinan E, Liu J‐G. Gauge method for viscous incompressible flows. Journal of Computational Physics (submitted)] is presented. This formulation replaces the pressure by a gauge variable. This new gauge variable is a numerical tool and differs from the standard gauge variable that arises from decomposing a compressible velocity field. It has the advantage that an additional boundary condition can be assigned to the gauge variable, thus eliminating the issue of a pressure boundary condition associated with the original primitive variable formulation. The computational task is then reduced to solving standard heat and Poisson equations, which are approximated by straightforward, piecewise linear (or higher‐order) finite elements. This method can achieve high‐order accuracy at a cost comparable with that of solving standard heat and Poisson equations. It is naturally adapted to complex geometry and it is much simpler than traditional finite element methods for incompressible flows. Several numerical examples on both structured and unstructured grids are presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
In gas-particle two-phase flows, when the concentration of the disperesed phase is low, certain assumptions may be made which simplify considerably the equations one has to solve. The gas and particle flows are then linked only via the interaction terms. One may therefore uncouple the full system of equations into two subsystems: one for the gas phase, whose homogeneous part reduces to the Euler equations; and a second system for the particle motion, whose homogeneous part is a degenerate hyperbolic system. The equations governing the gas phase flow may be solved using a high-resolution scheme, while the equations describing the motion of the dispersed phase are treated by a donor-cell method using the solution of a particular Riemann problem. Coupling is then achieved via the right-hand-side terms. To illustrate the capabilities of the proposed method, results are presented for a case specially chosen from among the most difficult to handle, since it involves certain geometrical difficulties, the treatment of regions in which particles are absent and the capturing of particle fronts.  相似文献   

20.
The application of grid stretching or grid adaptation is generally required in order to optimize the distribution of nodal points for fluid-dynamic simulation. This is necessitated by the presence of disjoint high gradient zones, that represent boundary or free shear layers, reversed flow or vortical flow regions, triple deck structures, etc. A domain decomposition method can be used in conjunction with an adaptive multigrid algorithm to provide an effective methodology for the development of optimal grids. In the present study, the Navier-Stokes (NS) equations are approximated with a reduced Navier-Stokes (RNS) system, that represents the lowest-order terms in an asymptotic Re expansion. This system allows for simplified boundary conditions, more generality in the location of the outflow boundary, and ensures mass conservation in all subdomain grid interfaces, as well as at the outflow boundary. The higher-order (NS) diffusion terms are included through a deferred corrector, in selected subdomains, when necessary. Adaptivity in the direction of refinement is achieved by grid splitting or domain decomposition in each level of the multigrid procedure. Normalized truncation error estimates of key derivatives are used to determine the boundaries of these subdomains. The refinement is optimized in two co-ordinate directions independently. Multidirectional adaptivity eliminates the need for grid stretching so that uniform grids are specified in each subdomain. The overall grid consists of multiple domains with different meshes and is, therefore, heavily graded. Results and computational efficiency are discussed for the laminar flow over a finite length plate and for the laminar internal flow in a backward-facing step channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号