首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the preparation and X‐ray crystallographic characterization of the first crystalline homoatomic polymer chain, which is part of a semiconducting pyrroloperylene–iodine complex. The crystal structure contains infinite polyiodide Iδ?. Interestingly, the structure of iodine within the insoluble, blue starch–iodine complex has long remained elusive, but has been speculated as having infinite chains of iodine. Close similarities in the low‐wavenumber Raman spectra of the title compound and starch–iodine point to such infinite polyiodide chains in the latter as well.  相似文献   

2.
On the Structure of Two Isothiazolium Polyiodides (C19H16FeNS)I5 and (C15H12NS)2I8 By oxidation of 3‐phenylamino thiopropenones with iodine two isothiazolium polyiodides were obtained, whose structures have been determined by X‐ray structure analysis. 2‐Phenyl‐5‐ferrocenyl‐isothiazolium pentaiodide(C19H16FeNS)I5 forms a layer structure with isothiazolium cations and polyiodide anions. The polyiodide layers contain pentaiodide ions I5, triiodide ions I3 and iodine molecules I2. Bis(2,5‐diphenyl‐isothiazolium) octaiodide (C15H12NS)2I8 also forms a layer structure with isothiazolium cations and polyiodide anions. The polyiodide layers are built up by octaiodide ions I82–, pentaiodide ions I5 and triiodide ions I3.  相似文献   

3.
This paper re-examines our previous molecular dynamics (MD) study on cellulose IIII crystal models with finite dimensions solvated in explicit water molecules. Eight crystal models, differing in a constituent lattice plane and dimensions, were studied. One calculation allowed for O–H and C–H bond stretching, and had a small time step of 0.5 fs. The other calculation adopted non-scaling factors of the 1–4 non-bonded interactions. As in our previous study, in the former MD calculations, six of the eight crystal models exhibited structure conversion with cooperative chain slippages generated by a progressive fiber bend. This converted the initial non-staggered chain packing of cellulose IIII into a near one-quarter staggering and gave the crystal model a triclinic-like configuration. In contrast, in the non-1–4 scaling MD calculations, all of the eight crystal models retained the initial cellulose IIII crystal structure. Another series of non-1–4 scaling MD calculations were performed for the four crystal models containing chains with a degree of polymerization (DP) of 40 at 370 K, which simulated hot water treatment to convert cellulose IIII to Iβ. Some of the hydroxymethyl groups irreversibly rotated from gt into tg conformation. This accompanied exchange of the intrasheet hydrogen bonding scheme along the (1 ?1 0) lattice plane from O2–O6 to O3–O6. The original corrugated (1 ?1 0) chain sheet was partly converted into a cellulose I-like flat chain sheet.  相似文献   

4.
The cations [Pd 2 Cl 2 L] 2+ and [KL 2 + (L = [18]aneN2S4, L′ =[15]aneO5) have been used as templates for the synthesis of unique three-dimensional polyiodide networks. The metal cations in [Pd2Cl2L]1.5I5(I3)2 are linked into infinite chains by pairwise hydrogen bonding; the resulting cationic polymers run through channels formed by the extended polyiodide network. [KL2]I9 shows a three-dimensional network of puckered cubic cages of I9 ions whose cavities are occupied by the metal cations (section from the structure shown on the right).  相似文献   

5.
Sum-frequency-generation (SFG) vibration spectroscopy is a technique only sensitive to functional groups arranged without centrosymmetry. For crystalline cellulose, SFG can detect the C6H2 and intra-chain hydrogen-bonded OH groups in the crystal. The geometries of these groups are sensitive to the hydrogen bonding network that stabilizes each cellulose polymorph. Therefore, SFG can distinguish cellulose polymorphs (Iβ, II, IIII and IIIII) which have different conformations of the exocyclic hydroxymethylene group or directionalities of glucan chains. The C6H2 asymmetric stretching peaks at 2,944 cm?1 for cellulose Iβ and 2,960 cm?1 for cellulose II, IIII and IIIII corresponds to the trans-gauche (tg) and gauche-trans (gt) conformation, respectively. The SFG intensity of the stretch peak of intra-chain hydrogen-bonded O–H group implies that the chain arrangement in cellulose crystal is parallel in Iβ and IIII, and antiparallel in II and IIIII.  相似文献   

6.
In hot-water molecular dynamics simulation at 370 K, four cellulose IIII crystal models, with different lattice planes and dimensions, exhibited partial crystalline transformations of (1 ?1 0) chain sheets, in which hydroxymethyl groups were irreversibly rotated from gt into tg conformations, accompanied by hydrogen-bond exchange from the original O3–O6 to cellulose-I-like O2–O6 bonds. The final hydrogen-bond exchange ratio was about 95 % for some of the crystal models after 50 ns simulation. The corrugated (1 ?1 0) chain sheet was converted to a cellulose-I-like flat chain sheet with a slightly right-handed twist. The 3D structures of the three types of isolated chain sheet models were optimized using density functional theory calculations to compare their stabilities without crystal packing forces. The cellulose Iβ (1 0 0) models were more stable than the cellulose IIII (1 ?1 0) models. The optimized structure of cellulose IIII (1 0 0) models deviated largely from the initial sheet form. It was proposed to the crystalline transformation from cellulose IIII to Iβ that conversion of the chain sheet structure first take place, followed by sliding of the chain sheet along the fiber axis.  相似文献   

7.
Silk fibroin (SF) fiber from the Bombyx mori silkworm was treated with a 1.23 N iodine/potassium iodide (I2–KI) aqueous solution, and the structure and physical properties were investigated to elucidate the effects of the iodine treatment. The SF fiber absorbed polyiodide ions such as I and I by immersion in the I2–KI solution, and the weight gain of the SF fiber increased with the treatment time; it became saturated at about 20 wt % after 40 h. The results of the weight gain, Fourier transform infrared spectroscopy, and X‐ray diffraction measurements suggested that polyiodide ions mainly entered the amorphous region. Moreover, a new sharp reflection in the meridional direction, corresponding to a period of 7.0 Å, was observed and indicated the possibility of the formation of a mesophase structure of β‐conformation chains. Dynamic viscoelastic measurements showed that the molecular motion of the crystalline regions at about 220 °C was enhanced and shifted to lower temperature by the introduction of polyiodide ions. This indicated that the iodine component weakened the hydrogen bonding between the SF molecules forming the β‐sheet structure and caused molecular motion of the crystal to occur more easily with heating. With heating above 270 °C, the iodine component introduced intermolecular crosslinking to SF, and the melt flow of the sample was inhibited. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3418–3426, 2006  相似文献   

8.
Black single crystals of [Lu(Db18c6)(H2O)3(thf)6]4(I3)2(I5)6(I8)(I12) were obtained from lutetium, I2 and Db18c6 (dibenzo‐18‐crown‐6) in THF solution. In the bulky cation, Lu3+ is surrounded by nine oxygen atoms, six of Db18c6 and three of water molecules to which two THF molecules are attached each. Meanwhile, four polyiodide anions, (I3), (I5), (I8)2– and (I12)2–, in a 2:6:1:1 ratio form a three‐dimensional network and leave space for the bulky cations.  相似文献   

9.
Iodocyclization products of 2-allylthioquinoline are obtained in the form of polyiodides with different stoichiometric compositions. X-ray crystallography data are analyzed for two different crystal structures of 1-iodomethyl-1,2-dihydro[1,3]thiazolo[3,2-a]quinolinium polyiodides: triiodide C12H11INS+I 3 ? and complex polyiodide 2(C12H11INS+I 3 ? )·I2. A comparison is made of the nonbonding interactions of dihydrothiazoloquinolinium with atoms of the triiodide anion and complex polyiodide to show the crystal structure features attributed to the participation of molecular iodine.  相似文献   

10.
On Pentaiodoplatinates(II, IV) M2PtI5 · 2 H2O (M ? K, Rb, NH4). Mixed-valence Compounds with Linear Chain Iodobridged Anions Pentaiodoplatinates M2PtI5 · 2 H2O (M ? K, Rb, NH4) are obtainable by crystallization from aqueous solutions formed by dissolving of tetrachloroplatinates(II) in highly concentrated solutions of alkali iodides MI. The structural parameters were determinated from single crystal data. The compounds are classed with the group of linear chain mixed-valence platinum complexes from Wolffram's Salt type. In the crystal structures PtI4-units are connected by asymnetric I-bridges to [PtI4I2/2] chains. There was no evidence of the existence of crystalline tetraiodoplatinates(II) M2PtI4.  相似文献   

11.
The molecular and crystal structures of 1-(4-fluorophenyl)-1,4-dihydro-1H-tetrazole-5-thione (I) and its complex with cadmium(II) (II) are studied by single crystal XRD. Free ligand I is thione; it has a nonplanar structure (the torsion angle between the tetrazole and benzene rings is 54.99(7)°) and forms H-bonded centrosymmetric dimers via two N–H…S hydrogen bonds in the crystal. The dimers contain a central planar eight-membered {S=C–N–H…S=C–N–H…} ring. Complex II has a chain structure with the composition [(C7H4N4FS)2Cd]n. The environment of the Cd(II) atom consists of two nitrogen atoms and two sulfur atoms from four ligands I and represents a distorted tetrahedron. When complex II forms, ligand I converts into the thiol form. Infinite 1D chains contain eight-membered {←S=C–N–Cd←S=C–N–Cd} rings in a chair conformation. The chains in the crystal are arranged in layers parallel to the (101) plane due to secondary intermolecular F…F and π–π-stacking interactions.  相似文献   

12.
Polyiodide formed by complexation of poly(vinyl acetate) (PVAc) with iodine in the presence of iodide has been investigated by chemical analysis and resonance Raman spectrophotometry. When PVAc films were immersed in iodide-iodine aqueous solutions which had different ratios of iodide to iodine concentration [I?]/[I2], the complex films exhibited tremendous variations of swelling degree, despite the relatively small change in the amount of bound iodine. From a quantitative chemical analysis, the composition of polyiodide bound to PVAc was found to be 1.01 ± 0.035 in the molar ratio of iodide to iodine irrespective of the composition of the iodide-iodine aqueous solution ([I?]/[I2] = 2–500). The polyiodide formed in PVAc-iodine-iodide complex was therefore inferred to be (I3?)n. Resonance Raman spectra obtained on PVAc-iodine-iodide complexes were also identical to those of the benzamide-iodine complex, in which the polyiodide consists of (I3?)n, consistent with the result from chemical analysis.  相似文献   

13.
The title compound, {(NH3C5H10NH3)2[Pb3I10]}n, crystallizes as an organic–inorganic hybrid. As such, the structure consists of extended chains of [Pb3I10]n4n ions extending along [111]. The asymmetric unit contains two independent Pb atoms: one is in a general position and the other is on an inversion centre. Each Pb atom is octahedrally coordinated by six iodide ions and exhibits both face‐ and edge‐sharing with adjacent atoms in the inorganic chain. The organic counter‐ion, viz. pentane‐1,5‐di­ammonium, lies in channels formed by the chains and interacts with these chains via N—H⋯I hydrogen bonding.  相似文献   

14.
A Three Dimensional Network of Iodide Ions and Iodine Molecules in the Crystal Structure of [Pr(Benzo-15-Crown-5)2]I21 Black polyhedra of [Pr(benzo-15-crown-5)2]I21 were grown from an ethanol / dichlormethane solution of PrI3, benzo-15-crown-5 and I2. The crystal structure (orthorhombic, P21cn, a = 1201.1(1), b = 2168.3(1), c = 2571.1(1) pm, Z = 4) is built up from sandwich like cations [Pr(benzo-15-crown-5)2]3+ and polyiodide anions I213-. This unique polyiodide anion exhibits a complex connection pattern of iodide ions and iodine molecules with variable bond lengths forming a complicated network.  相似文献   

15.
Studies on Polyhalides. III. Crystal Structures of [Cu(NH3)4I2 · I2] and [Cu(NH3)4I3]I3 Tetramminecopper(II)tetraiodide [Cu(NH3)4I2 · I2] (I) crystallizes monoclinically in the space group C2/m with a = 1 185.9 pm, b = 892.8 pm, c = 656.8 pm, β = 111.10° and Z = 2 formula units. Tetramminecopper(II)hexaiodide [Cu(NH3)4I3]I3 (II) crystallizes orthorhombically in the space group Pnnm with a = 874.9 pm, b = 1 089.8 pm, c = 885.3 pm, and Z = 2 formula units. A special feature of these structures are coordinated polyiodide ions I42? (I) or I3? (II). In both compounds four coplanar nitrogen atoms and two axial iodine atoms form a quasi-octahedral coordination around copper with the usual (4+2)-tetragonal distortion. The copper ions are connected by linear, centrosymmetric polyiodide ions I42? (I) or I3? (II). Therefore infinite planar zigzag chains of units [Cu(NH3)4I4] (I) or [Cu(NH3)4I3]+(II) are resulting. The counterion I3? (II) is intercalated between these chains.  相似文献   

16.
Piaselenole—Piaselenolium—Pentaiodide (C6H4N2Se · C6H5N2Se+ I3? · I2), a Structure with Polyiodide Layers The title compound crystallizes in the monoclinic space group P21/n with a = 9.320(3), b = 13.812(2), c = 17.159(3) Å, β = 96.11(2)°, V = 2196.3 Å3, Z = 4. There occur no isolated I5? anions but layer-shaped polyiodide aggregates built up by linear, asymmetric I3? anions and I2 molecules. Almost linear triiodide chains are connected by I2 molecules in a novel type of arrangement to form slightly puckered layers. The polyiodide layers contain several substructures known from other examples. The piaselenole and its conjugated acid, the piaselenolium cation, form a ribbon-like quasi-polymer in which the two components are alternating. They are connected in turns by a linear NH? N hydrogen bridge (N? N: 2.844 Å) and by a so called (SeN)2-connectivity parallelogram, in which Se? N bonds and Se? N contacts are adjacent. Here we found a very short Se? N contact distance of 2.691 Å. The bond distances of piaselenole (Se? N: 1.787(3) Å, N? C: 1.318(5) Å, C? C: 1.453(8) Å) and also the angles are equal or similar to those occuring in other 1,2,5-selenadiazoles. The protonation of one N in the SeN2 unit results in a loss of symmetry and significant changes in bonding distances and angles.  相似文献   

17.
Two species of iodide ions (I3? and I5?) are found in iodine—nylon 6 complexes. Orientation of I5? arrays (most likely I2/I3? complex) along the polymer chain and I3? ions perpendicular to the chain axis in uniaxially drawn films and in films with planar orientation suggests that there is and intrinsic relation between the direction of iodide ion arrays and nylon 6 chains. When an unoriented film of nylon 6 in the amorphous or the α crystalline form is treated with an aqueous solution of iodine—potassium iodide, the I3? species in the resulting iodine—nylon complex lie in planes parallel to the surface of the film, and I2/I3? units are oriented normal to the surface of the film. The γ form obtained by desorbing the iodine from this complex shows considerable uniaxial rientation with the nylon chains oriented perpendicular to the plane of the film; this orientation is maintained during the γ to α transition. It is proposed that the iodine-induced orientation of the nylon 6 chains is due to the nucleating effects of the iodide ion species as the iodine diffuses unidirectionally into the film.  相似文献   

18.

Dispersion and electrostatic interactions both contribute significantly to the tight assembly of macromolecular chains within crystalline polysaccharides. Using dispersion-corrected density functional theory (DFT) calculation, we estimated the elastic tensor of the four crystalline cellulose allomorphs whose crystal structures that are hitherto available, namely, cellulose Iα, Iβ, II, IIII. Comparison between calculations with and without dispersion correction allows quantification of the exact contribution of dispersion to stiffness at molecular level.

  相似文献   

19.
By the reaction of AuI with alkali metal hydrogen acetylides MIC2H (MI = Li–Cs) in liquid ammonia and subsequent heating of the remaining residue in refluxing pyridine (MI = Li, Na, K) or as a solid phase at about 110 °C in vacuum (MI = Rb, Cs) ternary alkali metal gold acetylides MIAuC2 were obtained. Their crystal structures were investigated by the means of X‐ray powder diffraction. [Au(C2)2/2] chains are the characteristic structural motif which are packed in a hexagonal (LiAgC2) and tetragonal arrangement (NaAuC2–CsAuC2), respectively. Simple calculations based on the close packing of rods and spheres can explain these different arrangements. The existence of C–C triple bonds in the title compounds is confirmed by Raman spectroscopic investigations.  相似文献   

20.
The temperature and pressure dependences of the electrical resistivities in the single crystals of the niobium iodides, NbI5, NbI4 and Nb3I8, were measured. The resistivity in ab plane of Nb3I8 was 50 Ω cm and along the c axis was about 100 Ω cm. The activation energy was 0.26 eV at atmospheric pressure. The electrical resistivity along niobium chain in NbI4 was about 300 Ω cm. The resistivity ratio of the single crystal (??|) is nearly 5. At around 150 kbar, only NbI4 showed the transition from insulator to metal. The relation between electrical properties and the crystal structure is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号