首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
彭祥  陈玉洁  刘家祥 《无机化学学报》2017,33(10):1769-1774
以乙二醇、乙醇为溶剂通过溶剂热法制备出立方状ITO纳米粉体,研究了反应时间、NaOH浓度对ITO纳米粉体形貌的影响,并讨论了溶剂体积比、NaOH浓度对ITO粉体导电性的影响及机理。结果表明:采用乙二醇与乙醇做溶剂,V_(EG)∶V_(EtOH)=4∶1时,制备出分散性良好的立方状ITO纳米粉体,平均粒径为10.7 nm,且其XRD衍射峰强度比I_(400)/I_(222)最高为0.380;乙二醇与乙醇做溶剂,V_(EG)∶V_(EtOH)=4∶1,且NaOH浓度为0.275 mol·L~(-1)时,粉体电导率最高为46.75 mS·cm~(-1)。  相似文献   

2.
以乙二醇、乙醇为溶剂通过溶剂热法制备出立方状ITO纳米粉体,研究了反应时间、NaOH浓度对ITO纳米粉体形貌的影响,并讨论了溶剂体积比、NaOH浓度对ITO粉体导电性的影响及机理。结果表明:采用乙二醇与乙醇做溶剂,VEGVEtOH=4:1时,制备出分散性良好的立方状ITO纳米粉体,平均粒径为10.7 nm,且其XRD衍射峰强度比I400/I222最高为0.380;乙二醇与乙醇做溶剂,VEGVEtOH=4:1,且NaOH浓度为0.275 mol·L-1时,粉体电导率最高为46.75 mS·cm-1。  相似文献   

3.
The six-dimensional torsion-vibration Hamiltonian of the H2O2 molecule and its H/D- and 18O/16O-isotopomers is derived. The Hamiltonian includes the kinetic energy operator, which depends on the tunneling coordinate, and the potential energy surface represented as a quartic polynomial with respect to the small-amplitude transverse coordinates. Parameters of the Hamiltonian were obtained from DFT calculations of the equilibrium geometries, eigenvectors, and eigenfrequencies of normal vibrations at the stationary points corresponding to the ground state and both the cis- and trans-transition states, carried out with the B3LYP density functional and 6-311+G(2d,p) basis set. The quantum dynamics problem is solved using the perturbative instanton approach generalized for the excited states situated above the barrier top. Vibration-tunneling spectra are calculated for the ground state and low-lying excited states with energies below 2000 cm–1. Strong kinematic and squeezed potential couplings between the large-amplitude torsional motion and bending modes are shown to be responsible for the vibration-assisted tunneling and for the dependence of tunneling splittings on the quantum numbers of small-amplitude transverse vibrations. Mode-specific isotope effects are predicted.  相似文献   

4.
The use of single‐molecule junctions for various functions constitutes a central goal of molecular electronics. The functional features and the efficiency of electron transport are dictated by the degree of energy‐level alignment (ELA), that is, the offset potential between the electrode Fermi level and the frontier molecular orbitals. Examples manifesting ELA are rare owing to experimental challenges and the large energy barriers of typical model compounds. In this work, single‐molecule junctions of organometallic compounds with five metal centers joined in a collinear fashion were analyzed. The single‐molecule iV scans could be conducted in a reliable manner, and the EFMO levels were electrochemically accessible. When the electrode Fermi level (EF) is close to the frontier orbitals (EFMO) of the bridging molecule, larger conductance was observed. The smaller |EF?EFMO| gap was also derived quantitatively, unambiguously confirming the ELA. The mechanism is described in terms of a two‐level model involving co‐tunneling and sequential tunneling processes.  相似文献   

5.
This paper compares rates of charge transport by tunneling across junctions with the structures AgTSX(CH2)2nCH3 //Ga2O3 /EGaIn (n=1–8 and X= ? SCH2? and ? O2C? ); here AgTS is template‐stripped silver, and EGaIn is the eutectic alloy of gallium and indium. Its objective was to compare the tunneling decay coefficient (β, Å?1) and the injection current (J0, A cm?2) of the junctions comprising SAMs of n‐alkanethiolates and n‐alkanoates. Replacing AgTSSCH2‐R with AgTSO2C‐R (R=alkyl chains) had no significant influence on J0 (ca. 3×103 A cm?2) or β (0.75–0.79 Å?1)—an indication that such changes (both structural and electronic) in the AgTSXR interface do not influence the rate of charge transport. A comparison of junctions comprising oligo(phenylene)carboxylates and n‐alkanoates showed, as expected, that β for aliphatic (0.79 Å?1) and aromatic (0.60 Å?1) SAMs differed significantly.  相似文献   

6.
Cyclo[18]carbon (C18), a recently synthesized carbon allotrope, was found to have a polyynic ground-state structure with D9h symmetry and formally alternating single and triple bonds. Yet, under less influencing experimental conditions this molecule might undergo an automerization reaction between its two degenerate geometries through a cumulenic (non-alternating, adjacent double bonds) D18h transition state. Herein, we discuss the role of quantum mechanical tunneling (QMT) in this degenerate reaction. Our computations predict that at the experimental temperature (5 K) the reaction in the gas phase is completely driven by an extremely rapid heavy atom tunneling (k=2.1×108 s−1). Even when approaching room temperature, the QMT rate is still an order of magnitude faster than the semi-classical one. We propose an experimental test to support our prediction, by measuring a characteristic tunneling energy splitting within the radio wave region. Additionally, we examine the role of QMT in other hypothetical C4n+2 carbon clusters.  相似文献   

7.
Small silver clusters Ag n (primarily probably Ag4 clusters which aggregate to Agn (400<n<2000)) are generated in the immediate vicinity of a four-electron reducing agent (based on hydroquinone) which is incorporated in a monolayer of long-chain alkanethiols. The hydroquinone derivative is oxidized to quinone (see the picture). Molecularly resolved scanning tunneling microscopy (STM) images were obtained of self-assembled monolayers with and without silver clusters.  相似文献   

8.
The correlation between structural and chemical properties of bimetallic PtRu/Ru(0001) model catalysts and their modification upon stepwise annealing of a submonolayer Pt‐covered Ru(0001) surface up to the formation of an equilibrated PtxRu1?x/Ru(0001) monolayer surface alloy was investigated by scanning tunneling microscopy and by the adsorption of CO and D2 probe molecules. Both temperature‐programmed desorption and IR measurements demonstrate the influence of the surface structure on the adsorption properties of the bimetallic surface, which can be explained by changes of the composition of the adsorption ensembles (ensemble effects) for D adsorption and by changes in the electronic interaction (ligand effects, strain effects) of the metallic constituents for CO and D adsorption upon alloy formation.  相似文献   

9.
Summary.  The detailed theoretical understanding of quantum spin dynamics in various molecular magnets is an important step on the roadway to technological applications of these systems. Quantum effects in both ferromagnetic and antiferromagnetic molecular clusters are, by now, theoretically well understood. Ferromagnetic molecular clusters allow one to study the interplay of incoherent quantum tunneling and thermally activated transitions between states with different spin orientation. The Berry phase oscillations found in Fe8 are signatures of the quantum mechanical interference of different tunneling paths. Antiferromagnetic molecular clusters are promising candidates for the observation of coherent quantum tunneling on the mesoscopic scale. Although challenging, application of molecular magnetic clusters for data storage and quantum data processing are within experimental reach already with present day technology. Corresponding author. E-mail: Daniel.Loss@unibas.ch Received May 7, 2002; accepted May 22, 2002  相似文献   

10.
The compounds α-cis?[Co(trien)(bipy)]Cl3 and α-cis?[Co(trien)(phen)]Cl3 were synthesized and characterized by one- and two-dimensional NMR spectroscopy. Compared to α-cis?[Co(trien)(NO2)2]Cl, the proton spectra of these two complexes were spread to a wider spectral width. With the aid of two-dimensional experiments, it was possible to assign three multiplets to specific protons, and the remaining multiplet was found to arise from overlap of three separate resonances.  相似文献   

11.
The growth of thin oxide films on wafers of p-Si, (100) orientation, was studied in neutral and acidic aqueous solutions up to 10 V by microelectrochemical (cyclic voltammograms and current transient of potential steps) and microellipsometric measurements. The oxidation occurs according to the high-field law with high-field parameters log(i 0/A cm–2)=–13.4±1 and β=10.6±0.1 nm V–1. The oxide films represent an almost ideal dielectric material with ε=6.5. Oxide growth is not affected by oxygen evolution, which starts at potentials >3 V. The electron transfer process was analysed in relation to the oxygen evolution reaction. Owing to the presence of oxide thicknesses higher than 2 nm at this point, direct tunneling is less probable and a tunneling via traps should be assumed for the charge transfer. Evidence for coupled electronic and ionic conduction is presented. A contribution of the valence band in SiO2 is stated for the corrosion of oxides at potentials >4.5 V. Electronic Publication  相似文献   

12.
Previously, the structure of the carbon allotrope glitter has been disclosed, and a theory accompanying the structural report as to its bulk modulus at pressure predicted it would be among the hardest materials possible. The dynamic elasticity theory developed in that paper, involving the forces generated in elastic chemical bond deformations resulting from applied mechanical forces, is here applied to the cubic diamond lattice. Stresses, both lateral and axial, contribute to the bulk modulus of cubic diamond at pressure. The ultimate strength of the cubic diamond lattice, in the approximations of the dynamic elasticity theory presented in this paper, is estimated to be in excess of 1 TPa, at modest bond length deformations of about 0.1 ?, and when including the zero pressure bulk modulus B 0 in the computation. In particular, the dynamic elasticity model predicts the hardest direction of cubic diamond will be for an isotropic mechanical force applied along 〈111〉 directions of the structural unit cell.  相似文献   

13.
Carbon–carbon bond reductive elimination from gold(III) complexes are known to be very slow and require high temperatures. Recently, Toste and co‐workers have demonstrated extremely rapid C?C reductive elimination from cis‐[AuPPh3(4‐F‐C6H4)2Cl] even at low temperatures. We have performed DFT calculations to understand the mechanistic pathway for these novel reductive elimination reactions. Direct dynamics calculations inclusive of quantum mechanical tunneling showed significant contribution of heavy‐atom tunneling (>25 %) at the experimental reaction temperatures. In the absence of any competing side reactions, such as phosphine exchange/dissociation, the complex cis‐[Au(PPh3)2(4‐F‐C6H4)2]+ was shown to undergo ultrafast reductive elimination. Calculations also revealed very facile, concerted mechanisms for H?H, C?H, and C?C bond reductive elimination from a range of neutral and cationic gold(III) centers, except for the coupling of sp3 carbon atoms. Metal–carbon bond strengths in the transition states that originate from attractive orbital interactions control the feasibility of a concerted reductive elimination mechanism. Calculations for the formation of methane from complex cis‐[AuPPh3(H)CH3]+ predict that at ?52 °C, about 82 % of the reaction occurs by hydrogen‐atom tunneling. Tunneling leads to subtle effects on the reaction rates, such as large primary kinetic isotope effects (KIE) and a strong violation of the rule of the geometric mean of the primary and secondary KIEs.  相似文献   

14.
The effects of charged species on proton‐coupled electron‐transfer (PCET) reaction should be of significance for understanding/application of important chemical and biological PCET systems. Such species can be found in proximity of activated complex in a PCET reaction, although they are not involved in the charge transfer process. Reported here is the first study of the above‐mentioned effects. Here, the effects of Na+, K+, Li+, Ca2+, Mg2+, and Me4N+ observed in PCET reaction of ascorbate monoanions with hexacyanoferrate(III) ions in H2O reveal that, in presence of ions, this over‐the‐barrier reaction entered into tunneling regime. The observations are: a) dependence of the rate constant on the cation concentration, where the rate constant is 71 (at I = 0.0023), and 821 (at 0.5M K+), 847 (at 1.0M Na+), and 438 M ?1 s?1 (at 0.011M Ca2+); b) changes of kinetic isotope effect (KIE) in the presence of ions, where kH/kD=4.6 (at I = 0.0023), and 3.4 (in the presence of 0.5M K+), 3.3 (at 1.0M Na+), 3.9 (at 0.001M Ca2+), and 3.9 (at 0.001M Mg2+), respectively; c) the isotope effects on Arrhenius pre‐factor where AH/AD=0.97 (0.15) in absence of ions, and 2.29 (0.60) (at 0.5M Na+), 1.77 (0.29) (at 1.0M Na+), 1.61 (0.25) (at 0.5M K+), 0.42 (0.16) (at 0.001M Ca2+) and 0.16 (0.19) (at 0.001M Mg2+); d) isotope differences in the enthalpies of activation in H2O and in D2O, where ΔΔH?(D,H)=3.9 (0.4) kJ mol?1 in the absence of cations, 1.3 (0.6) at 0.5M Na+, 1.8 (0.4) at 0.5M K+, 1.5 (0.4) at 1.0M Na+, 5.5 (0.9) (at 0.001M Ca2+), and 7.9 (2.8) (at 0.001M Mg2+) kJ mol?1; e) nonlinear proton inventory in reaction. In the H2O/dioxane 1 : 1, the observed KIE is 7.8 and 4.4 in the absence and in the presence of 0.1M K+, respectively, and AH/AD=0.14 (0.03). The changes when cations are present in the reaction are explained in terms of termolecular encounter complex consisting of redox partners, and the cation where the cation can be found in a near proximity of the reaction‐activated complex thus influencing the proton/electron double tunneling event in the PCET process. A molecule of H2O is involved in the transition state. The resulting ‘configuration’ is more ‘rigid’ and more appropriate for efficient tunneling with Na+ or K+ (extensive tunneling observed), i.e., there is more precise organized H transfer coordinate than in the case of Ca2+ and Mg2+ (moderate tunneling observed) in the reaction.  相似文献   

15.
以醋酸铅为铅源,硫代乙酰胺为硫源,在表面活性剂十二烷基硫酸钠(SDS)和十六烷基三甲基溴化铵(CTAB)共同作用下,通过简单地调节水热反应的反应温度控制合成出球状、立方状和空心立方状PbS纳米晶。利用XRD、TEM对合成产物的结构和形貌进行了表征,发现合成的球状、立方状和空心立方状PbS纳米晶尺寸均一,直径为100 nm左右。对球状、立方状和空心立方状PbS纳米晶的形成机理进行了初探,结果表明反应温度较低时,水热反应初始阶段形成的PbS小颗粒呈球形,在表面活性剂SDS的烷基链模板和CTAB微胶束软模板共同作用下生成球状PbS纳米晶;反应温度较高时,水热反应初始阶段形成的PbS小颗粒由于自身的立方相岩盐晶体结构的影响有呈立方状趋势,在SDS和CTAB共同作用下产物堆积成空心立方体状或立方状。  相似文献   

16.
Molecular conformation, quantum tunneling, and hydrogen bonding play important roles in various photochemical processes. We have studied a number of small molecules possessing rotational isomerism (HONO, formic acid, acetic acid, etc.) isolated in noble-gas solid matrices. Selective vibrational excitation efficiently promotes the conformational change in the excited molecule, which allows preparation of higher-energy conformers. Stability of the higher-energy conformers is often limited by quantum tunneling of hydrogen as observed for some carboxylic acids (formic, acetic, etc.). The tunneling mechanism is supported by the strong H/D isotope effect and characteristic temperature dependence with a clear low-temperature limit. The reaction barrier height is an important factor in a tunneling process; however, other factors also play an essential role. The energy mismatch between the initial state of the higher-energy conformer and accepting state of the ground-state conformer is probably important. Hydrogen bonding can change tunneling decay rate of unstable conformers. The transcis formic acid dimer was prepared by vibrational excitation of the transtrans form in neon and argon matrices. Tunneling decay of cis formic acid is substantially slower in the dimeric form compared to monomer, especially in solid neon. This stabilization effect is explained by a complexation-induced increase of reaction barrier, which is confirmed computationally. The complex between cis formic acid and water was prepared in an argon matrix and found to be stable at low-temperatures. These results show that intrinsically unstable conformational structures can be thermodynamically stabilized in asymmetrical hydrogen-bonded network. This effect occurs when the energy difference between conformers is smaller than the hydrogen bond interaction energy, which allows chemistry of unstable conformers to be studied.  相似文献   

17.
This work examines charge transport (CT) through self‐assembled monolayers (SAMs) of oligoglycines having an N‐terminal cysteine group that anchors the molecule to a gold substrate, and demonstrate that CT is rapid (relative to SAMs of n‐alkanethiolates). Comparisons of rates of charge transport‐using junctions with the structure AuTS/SAM//Ga2O3/EGaIn (across these SAMs of oligoglycines, and across SAMs of a number of structurally and electronically related molecules) established that rates of charge tunneling along SAMs of oligoglycines are comparable to that along SAMs of oligophenyl groups (of comparable length). The mechanism of tunneling in oligoglycines is compatible with superexchange, and involves interactions among high‐energy occupied orbitals in multiple, consecutive amide bonds, which may by separated by one to three methylene groups. This mechanistic conclusion is supported by density functional theory (DFT).  相似文献   

18.
Multidimensional tunneling calculations are carried out for 13 reactions, to test the scope of heavy‐atom tunneling in organic chemistry, and to check the accuracy of one‐dimensional tunneling models. The reactions include pericyclic, cycloaromatization, radical cyclization and ring opening, and SN2. When compared at the temperatures that give the same effective rate constant of 3×10−5 s−1, tunneling accounts for 25–95 % of the rate in 8 of the 13 reactions. Values of transmission coefficients predicted by Bell's formula, κBell , agree well with multidimensional tunneling (canonical variational transition state theory with small curvature tunneling), κSCT. Mean unsigned deviations of κBell vs. κSCT are 0.08, 0.04, 0.02 at 250, 300 and 400 K. This suggests that κBell is a useful first choice for predicting transmission coefficients in heavy‐atom tunnelling.  相似文献   

19.
Broadband microwave spectra were recorded over the 2-18 GHz frequency range for a series of four model aromatic components of lignin; namely, guaiacol (ortho-methoxy phenol, G ), syringol (2,6-dimethoxy phenol, S ), 4-methyl guaiacol ( MG ), and 4-vinyl guaiacol ( VG ), under jet-cooled conditions in the gas phase. Using a combination of 13C isotopic data and electronic structure calculations, distortions of the phenyl ring by the substituents on the ring are identified. In all four molecules, the rC(1)-C(6) bond between the two substituted C-atoms lengthens, leading to clear bond alternation that reflects an increase in the phenyl ring resonance structure with double bonds at rC(1)-C(2), rC(3)-C(4) and rC(5)-C(6). Syringol, with its symmetric methoxy substituents, possesses a microwave spectrum with tunneling doublets in the a-type transitions associated with H-atom tunneling. These splittings were fit to determine a barrier to hindered rotation of the OH group of 1975 cm−1, a value nearly 50 % greater than that in phenol, due to the presence of the intramolecular OH⋅⋅⋅OCH3 H-bonds at the two equivalent planar geometries. In 4-methyl guaiacol, methyl rotor splittings are observed and used to confirm and refine an earlier measurement of the three-fold barrier V3=67 cm−1. Finally, 4-vinyl guaiacol shows transitions due to two conformers differing in the relative orientations of the vinyl and OH groups.  相似文献   

20.
Measuring the parity‐violating energy difference ΔpvE between the enantiomers of chiral molecules is a major challenge of current physical‐chemical stereochemistry. An important step towards this goal is to identify suitable molecules for such experiments by means of theory. This step has been made by calculations for the complex dynamics of tunneling and electroweak quantum chemistry of parity violation in the “classic” molecule trisulfane, HSSSH, which satisfies the relevant conditions for experiments almost ideally, as the molecule is comparatively simple and parity violation clearly dominates over tunneling in the ground state. At the same time, the barrier for stereomutation is easily overcome by the S?H infrared chromophore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号