首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herbal medicines (HMs) are regarded as one of the traditional medicines in health care to prevent and treat some diseases. Some herbal components such as turmeric and ginger are used as HMs, therefore the identification and confirmation of herbal use are very necessary. In addition, the adulteration practice, mainly motivated to gain economical profits, may occur by substituting the high price of HMs with lower-priced ones or by addition of certain chemical constituents known as Bahan Kimia Obat (chemical drug ingredients) in Indonesia. Some analytical methods based on spectroscopic and chromatographic methods are developed for the authenticity and confirmation of the HMs used. Some approaches are explored during HMs authentication including single-component analysis, fingerprinting profiles, and metabolomics studies. The absence of reference standards for certain chemical markers has led to exploring the fingerprinting approach as a tool for the authentication of HMs. During fingerprinting-based spectroscopic and chromatographic methods, the data obtained were big, therefore the use of chemometrics is a must. This review highlights the application of fingerprinting profiles using variables of spectral and chromatogram data for authentication in HMs. Indeed, some chemometrics techniques, mainly pattern recognition either unsupervised or supervised, were applied for this purpose.  相似文献   

2.
3.
Untargeted metabolomics approaches are emerging as powerful tools for the quality evaluation and authenticity of food and beverages and have been applied to wine science. However, most fail to report the method validation, quality assurance and/or quality control applied, as well as the assessment through the metabolomics-methodology pipeline. Knowledge of Mexican viticulture, enology and wine science remains scarce, thus untargeted metabolomics approaches arise as a suitable tool. The aim of this study is to validate an untargeted HS-SPME-GC-qTOF/MS method, with attention to data processing to characterize Cabernet Sauvignon wines from two vineyards and two vintages. Validation parameters for targeted methods are applied in conjunction with the development of a recursive analysis of data. The combination of some parameters for targeted studies (repeatability and reproducibility < 20% RSD; linearity > 0.99; retention-time reproducibility < 0.5% RSD; match-identification factor < 2.0% RSD) with recursive analysis of data (101 entities detected) warrants that both chromatographic and spectrometry-processing data were under control and provided high-quality results, which in turn differentiate wine samples according to site and vintage. It also shows potential biomarkers that can be identified. This is a step forward in the pursuit of Mexican wine characterization that could be used as an authentication tool.  相似文献   

4.
Food fingerprinting approaches are expected to become a very potent tool in authentication processes aiming at a comprehensive characterization of complex food matrices. By non-targeted spectrometric or spectroscopic chemical analysis with a subsequent (multivariate) statistical evaluation of acquired data, food matrices can be investigated in terms of their geographical origin, species variety or possible adulterations. Although many successful research projects have already demonstrated the feasibility of non-targeted fingerprinting approaches, their uptake and implementation into routine analysis and food surveillance is still limited. In many proof-of-principle studies, the prediction ability of only one data set was explored, measured within a limited period of time using one instrument within one laboratory. Thorough validation strategies that guarantee reliability of the respective data basis and that allow conclusion on the applicability of the respective approaches for its fit-for-purpose have not yet been proposed. Within this review, critical steps of the fingerprinting workflow were explored to develop a generic scheme for multivariate model validation. As a result, a proposed scheme for “good practice” shall guide users through validation and reporting of non-targeted fingerprinting results. Furthermore, food fingerprinting studies were selected by a systematic search approach and reviewed with regard to (a) transparency of data processing and (b) validity of study results. Subsequently, the studies were inspected for measures of statistical model validation, analytical method validation and quality assurance measures. In this context, issues and recommendations were found that might be considered as an actual starting point for developing validation standards of non-targeted metabolomics approaches for food authentication in the future. Hence, this review intends to contribute to the harmonization and standardization of food fingerprinting, both required as a prior condition for the authentication of food in routine analysis and official control.  相似文献   

5.
俞邱豪  张九凯  叶兴乾  陈颖 《色谱》2016,34(7):657-664
随着食品工业的快速发展以及生活水平的提高,人们对食品的质量安全提出了更高的要求,市场上的食品掺假造假现象也日益受到社会的关注。目前,主要的食品掺假手段包括假冒物种及品种、冒充或虚标原产地、原料品质以次充好、掺入杂劣质及违禁原料等。因此亟须建立切实有效的食品真实属性鉴别方法。近几年来,国内外一些学者开始将代谢组学研究平台应用于解决食品安全问题的研究,对食品中尽可能多的代谢产物从整体角度进行定性定量分析,为食品真实属性鉴别研究提供了一种新的研究工具。该文综述了基于代谢组学的食品物种及品种鉴别、产地溯源、品质分级和掺假掺杂识别等真实属性鉴别研究,为进一步保证食品质量安全、保障消费者利益提供了技术支撑。  相似文献   

6.
ABSTRACT

The analysis of food products is important for the assessment of food quality and authenticity, the control of a technological process, the determination of nutritional values, and the detection of compounds which could exert beneficial or toxic effects on human health. Techniques which are usually chosen for these purposes must provide accurate and reliable results, being relatively simple and inexpensive to perform. The aim of this paper is to give a brief overview of the thin-layer chromatography methods for the analysis of different compounds (polyphenols, dyes, carboxylic acids, biogenic amines, and vitamin C), used for quality assessment and authentication of non-fermented or fermented beverages derived from fruits, namely fruit juices and wines.  相似文献   

7.
The fast-growing food industry is bringing significant number of new products to the market. To protect consumers’ health and rights, it is crucial that food control laboratories are able to ensure reliable quality testing, including product authentication and detection of adulterations. In our study, we applied a fast and eco-friendly method based on shotgun-lipidomic mass spectrometry for the authentication of niche edible oils. Comprehensive lipid profiles of camelina (CA), flax (FL) and hemp (HP) seed oils were obtained. With the aid of principal component analysis (PCA), it was possible to detect and distinguish each of them based on their lipid profiles. Lipidomic markers characteristic ofthe oils were also identified, which can be used as targets and expedite development of new multiplexed testing methods.  相似文献   

8.
Currently, the authentication analysis of edible fats and oils is an emerging issue not only by producers but also by food industries, regulators, and consumers. The adulteration of high quality and expensive edible fats and oils as well as food products containing fats and oils with lower ones are typically motivated by economic reasons. Some analytical methods have been used for authentication analysis of food products, but some of them are complex in sampling preparation and involving sophisticated instruments. Therefore, simple and reliable methods are proposed and developed for these authentication purposes. This review highlighted the comprehensive reports on the application of infrared spectroscopy combined with chemometrics for authentication of fats and oils. New findings of this review included (1) FTIR spectroscopy combined with chemometrics, which has been used to authenticate fats and oils; (2) due to as fingerprint analytical tools, FTIR spectra have emerged as the most reported analytical techniques applied for authentication analysis of fats and oils; (3) the use of chemometrics as analytical data treatment is a must to extract the information from FTIR spectra to be understandable data. Next, the combination of FTIR spectroscopy with chemometrics must be proposed, developed, and standardized for authentication and assuring the quality of fats and oils.  相似文献   

9.
The ever increasing interest of consumers for safety, authenticity and quality of food commodities has driven the attention towards the analytical techniques used for analyzing these commodities. In recent years, rapid and reliable sensor, spectroscopic and chromatographic techniques have emerged that, together with multivariate and multiway chemometrics, have improved the whole control process by reducing the time of analysis and providing more informative results. In this progression of more and better information, the combination (fusion) of outputs of different instrumental techniques has emerged as a means for increasing the reliability of classification or prediction of foodstuff specifications as compared to using a single analytical technique. Although promising results have been obtained in food and beverage authentication and quality assessment, the combination of data from several techniques is not straightforward and represents an important challenge for chemometricians. This review provides a general overview of data fusion strategies that have been used in the field of food and beverage authentication and quality assessment.  相似文献   

10.
田尉婧  张九凯  程海燕  李鲜  陈颖 《色谱》2018,36(7):588-598
蛋白质组学作为后基因组时代的一个新研究方向,近几年发展迅速,目前已应用于多个领域,在食品品质检测和安全控制方面成为有力的研究工具。蛋白质组学为食品科学的相关研究打开了新思路,不仅可以鉴定蛋白质种类,还可进行蛋白质定量,为分析不同物种、产地、成熟阶段的食品蛋白质组分和含量提供了可能。蛋白质组学研究手段多样,质谱是常用技术之一。该文介绍了蛋白质组学的概念、分类、研究技术以及常见蛋白质数据库,综述了基于质谱的蛋白质组学技术在真伪鉴别和品质检测方面的应用,涉及海鲜、肉制品、奶制品、保健食品及高附加值食品等多种食品,并对蛋白质组学的发展进行了展望。  相似文献   

11.
Spices and herbs are among the most commonly adulterated food types. This is because spices are widely used to process food. Spices not only enhance the flavor and taste of food, but they are also sources of numerous bioactive compounds that are significantly beneficial for health. The healing effects of spices are connected with their antimicrobial, anti-inflammatory and carminative properties. However, regular consumption of adulterated spices may cause fatal damage to our system because adulterants in most cases are unhealthy. For that reason, the appropriate analytical methods are necessary for quality assurance and to ensure the authenticity of spices. Spectroscopic methods are gaining interest as they are fast, require little or no sample preparation, and provide rich structural information. This review provides an overview of the application of NMR spectroscopy combined with chemometric analysis to determine the quality and adulteration of spices.  相似文献   

12.
In the last years, there was an increasing interest on nuclear magnetic resonance (NMR) spectroscopy, whose applications experienced an exponential growth in several research fields, particularly in food science. NMR was initially developed as the elective technique for structure elucidation of single molecules and nowadays is playing a dominant role in complex mixtures investigations. In the era of the “omics” techniques, NMR was rapidly enrolled as one of the most powerful methods to approach metabolomics studies. Its use in analytical routines, characterized by rapid and reproducible measurements, would provide the identification of a wide range of chemical compounds simultaneously, disclosing sophisticated frauds or addressing the geographical origin, as well as revealing potential markers for other authentication purposes. The great economic value of high-quality or guaranteed foods demands highly detailed characterization to protect both consumers and producers from frauds. The present scenario suggests metabolomics as the privileged approach of modern analytical studies for the next decades. The large potentiality of high-resolution NMR techniques is here presented through specific applications and using different approaches focused on the authentication process of some foods, like tomato paste, saffron, honey, roasted coffee, and balsamic and traditional balsamic vinegar of Modena, with a particular focus on geographical origin characterization, ageing determination, and fraud detection.  相似文献   

13.
Chen Y  Wu Y 《色谱》2011,29(7):594-600
食品安全关系国计民生,食品物种鉴定是食品安全链的重要环节。基因检测技术的发展使食品物种鉴定变得更加快速、准确、灵敏。本文对近十年来国内外采用基因检测技术进行食品物种鉴定的研究和应用情况进行了总结和分析,包括基因检测技术的特点、主要方法及其在动物源性食品、植物源性食品、高附加值食品和深加工食品分析中的应用以及未来的发展。  相似文献   

14.
15.
Over the past years, LC–MS‐based approaches have gained a growing interest in food analysis by using different platforms and methodologies. In particular, enhanced selectivity and sensitivity of multiple reaction monitoring (MRM) scan function offer powerful capabilities in detecting and quantifying specific analytes within complex mixtures such as food matrices. The MRM approach, traditionally applied in biomedical research, is particularly suitable for the detection of food adulteration and for the verification of authenticity to assure food safety and quality, both recognized as top priorities by the European Union Commission. Increasingly stringent legislation ensure products safety along every step ‘from farm to fork’, especially for traditional foods designed with the Protected Designation of Origin certification. Therefore, there is a growing demand of new methodologies for defining food authenticity in order to preserve their unique traits against frauds. In this work, an ultra performance liquid chromatopgraphy‐electrospray ionization‐tandem mass spectrometry (MS/MS) methodology based on MRM has been developed for the sensitive and selective detection of buffalo mozzarella adulteration. The targeted quantitative analysis was performed by monitoring specific transitions of the phosphorylated β‐casein f33‐48 peptide, identified as a novel species‐specific proteotypic marker. The high sensitivity of MRM‐based MS and the wide dynamic range of triple quadrupole spectrometers have proved to be a valuable tool for the analysis of food matrices such as dairy products, thus offering new opportunities for monitoring food quality and adulterations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Polymerase chain reaction techniques for food allergen detection   总被引:5,自引:0,他引:5  
Food allergies represent an important health problem in industrialized countries. Undeclared allergenic foods as contaminants in food products pose a major risk for sensitized persons. Reliable detection and quantification methods for food allergens are necessary to ensure compliance with food labeling and improve consumer protection. The methods currently used for the detection of potential allergens in foods are to target either the allergen itself or a marker that indicates the presence of the offending food. As markers for the presence of potentially allergenic foods or ingredients, specific proteins or DNA fragments are targeted. In routine food analysis, the enzyme-linked immunosorbent assay (ELISA) and the polymerase chain reaction (PCR) in the form of a real-time PCR or in combination with an ELISA have been used. The availability, the characteristics, and some future aspects of DNA-based methods in the rapid and sensitive detection of potentially allergenic food constituents or contaminations are discussed in this review.  相似文献   

18.
Herbal products, for example botanical dietary supplements, are widely used. Analytical methods are needed to ensure that botanical ingredients used in commercial products are correctly identified and that research materials are of adequate quality and are sufficiently characterized to enable research to be interpreted and replicated. Adulteration of botanical material in commerce is common for some species. The development of analytical methods for specific botanicals, and accurate reporting of research results, depend critically on correct identification of test materials. Conscious efforts must therefore be made to ensure that the botanical identity of test materials is rigorously confirmed and documented through preservation of vouchers, and that their geographic origin and handling are appropriate. Use of material with an associated herbarium voucher that can be botanically identified is always ideal. Indirect methods of authenticating bulk material in commerce, for example use of organoleptic, anatomical, chemical, or molecular characteristics, are not always acceptable for the chemist’s purposes. Familiarity with botanical and pharmacognostic literature is necessary to determine what potential adulterants exist and how they may be distinguished.  相似文献   

19.
Verifying the authenticity of food products is essential due to the recent increase in counterfeit meat-containing food products. The existing methods of detection have a number of disadvantages. Therefore, simple, cheap, and sensitive methods for detecting various types of meat are required. In this study, we propose a rapid full-cycle technique to control the chicken or pig adulteration of meat products, including 3 min of crude DNA extraction, 20 min of recombinase polymerase amplification (RPA) at 39 °C, and 10 min of lateral flow assay (LFA) detection. The cytochrome B gene was used in the developed RPA-based test for chicken and pig identification. The selected primers provided specific RPA without DNA nuclease and an additional oligonucleotide probe. As a result, RPA–LFA, based on designed fluorescein- and biotin-labeled primers, detected up to 0.2 pg total DNA per μL, which provided up to 0.001% w/w identification of the target meat component in the composite meat. The RPA–LFA of the chicken and pig meat identification was successfully applied to processed meat products and to meat after heating. The results were confirmed by real-time PCR. Ultimately, the developed analysis is specific and enables the detection of pork and chicken impurities with high accuracy in raw and processed meat mixtures. The proposed rapid full-cycle technique could be adopted for the authentication of other meat products.  相似文献   

20.
Consumers today demand the use of natural additives and preservatives in all fresh and processed foods, including meat and meat products. Meat, however, is highly susceptible to oxidation and microbial growth that cause rapid spoilage. Essential oils are natural preservatives used in meat and meat products. While they provide antioxidant and antimicrobial properties, they also present certain disadvantages, as their intense flavor can affect the sensory properties of meat, they are subject to degradation under certain environmental conditions, and have low solubility in water. Different methods of incorporation have been tested to address these issues. Solutions suggested to date include nanotechnological processes in which essential oils are encapsulated into a lipid or biopolymer matrix that reduces the required dose and allows the formation of modified release systems. This review focuses on recent studies on applications of nano-encapsulated essential oils as sources of natural preservation systems that prevent meat spoilage. The studies are critically analyzed considering their effectiveness in the nanostructuring of essential oils and improvements in the quality of meat and meat products by focusing on the control of oxidation reactions and microbial growth to increase food safety and ensure innocuity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号