首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A finite volume solver for the 2D depth‐integrated harmonic hyperbolic formulation of the mild‐slope equation for wave propagation is presented and discussed. The solver is implemented on unstructured triangular meshes and the solution methodology is based upon a Godunov‐type second‐order finite volume scheme, whereby the numerical fluxes are computed using Roe's flux function. The eigensystem of the mild‐slope equations is derived and used for the construction of Roe's matrix. A formulation that updates the unknown variables in time implicitly is presented, which produces a more accurate and reliable scheme than hitherto available. Boundary conditions for different types of boundaries are also derived. The agreement of the computed results with analytical results for a range of wave propagation/transformation problems is very good, and the model is found to be virtually paraxiality‐free. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
A new HLLC (Harten-Lax-van leer contact) approximate Riemann solver with the preconditioning technique based on the pseudo-compressibility formulation for numerical simulation of the incompressible viscous flows has been proposed, which follows the HLLC Riemann solver (Harten, Lax and van Leer solver with contact resolution modified by Toro) for the compressible flow system. In the authors' previous work, the preconditioned Roe's Riemann solver is applied to the finite difference discretisation of the inviscid flux for incompressible flows. Although the Roe's Riemann solver is found to be an accurate and robust scheme in various numerical computations, the HLLC Riemann solver is more suitable for the pseudo-compressible Navier--Stokes equations, in which the inviscid flux vector is a non-homogeneous function of degree one of the flow field vector, and however the Roe's solver is restricted to the homogeneous systems. Numerical investigations have been performed in order to demonstrate the efficiency and accuracy of the present procedure in both two- and three-dimensional cases. The present results are found to be in good agreement with the exact solutions, existing numerical results and experimental data.  相似文献   

3.
A Godunov-type upwind finite volume solver of the non-linear shallow water equations is described. The shallow water equations are expressed in a hyperbolic conservation law formulation for application to cases where the bed topography is spatially variable. Inviscid fluxes at cell interfaces are computed using Roe's approximate Riemann solver. Second-order accurate spatial calculations of the fluxes are achieved by enhancing the polynomial approximation of the gradients of conserved variables within each cell. Numerical oscillations are curbed by means of a non-linear slope limiter. Time integration is second-order accurate and implicit. The numerical model is based on dynamically adaptive unstructured triangular grids. Test cases include an oblique hydraulic jump, jet-forced flow in a flat-bottomed circular reservoir, wind-induced circulation in a circular basin of non-uniform bed topography and the collapse of a circular dam. The model is found to give accurate results in comparison with published analytical and alternative numerical solutions. Dynamic grid adaptation and the use of a second-order implicit time integration scheme are found to enhance the computational efficiency of the model.  相似文献   

4.
Numerical modelling of shallow water flow in two dimensions is presented in this work with the results obtained in dam break tests. Free surface flow in channels can be described mathematically by the shallow‐water system of equations. These equations have been discretized using an approach based on unstructured Delaunay triangles and applied to the simulation of two‐dimensional dam break flows. A cell centred finite volume method based on Roe's approximate Riemann solver across the edges of the cells is presented and the results are compared for first‐ and second‐order accuracy. Special treatment of the friction term has been adopted and will be described. The scheme is capable of handling complex flow domains as shown in the simulation corresponding to the test cases proposed, i.e. that of a dam break wave propagating into a 45° bend channel (UCL) and in a channel with a constriction (LNEC‐IST). Comparisons of experimental and numerical results are shown. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
A numerical technique for the modelling of shallow water flow in one and two dimensions is presented in this work along with the results obtained in different applications involving unsteady flows in complex geometries. A cell‐centred finite volume method based on Roe's approximate Riemann solver across the edges of both structured and unstructured cells is presented. The discretization of the bed slope source terms is done following an upwind approach. In some applications a problem arises when the flow propagates over adverse dry bed slopes, so a special procedure has been introduced to model the advancing front. It is shown that this modification reproduces exactly steady state of still water in configurations with strong variations in bed slope and contour. The applications presented are mainly related with unsteady flow problems. The scheme is capable of handling complex flow domains as will be shown in the simulations corresponding to the test cases that are going to be presented. Comparisons of experimental and numerical results are shown for some of the tests. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract

A flux formulation using a projected 2D Roe Riemann solver on unstructured grids (R2D Solver) is introduced for solving the Navier-Stokes equations and is applied to calculations of axisymmetric laminar near-wake flows behind a spherical-conical body. The numerical framework was first developed by P. L. Roe et al, in the late eighties. They looked for unsteady solutions to Euler's equations using a rather simple but exact three state linearization on triangular grids and decomposing the solution using some effective wave models. Our approach differs from their techniques by constructing a second order accurate and conservative flux functions under the well-known classical finite volume formulation. However, our Riemann Solver is obtained by a suitable linearization procedure upon all three prescribed nodal values given on each triangle. Our numerical method is applied to a Mach 4.3 flow problem for refined unstructured triangular grid behind the body. Numerical results indicate that our technique is stable, accurate and converges successfully to a stationary solution as the cell size is reduced from the coarse lo the finest grid.  相似文献   

7.
A wetting–drying condition (WDC) for unsteady shallow water flow in two dimensions leading to zero numerical error in mass conservation is presented in this work. Some applications are shown which demonstrate the effectiveness of the WDC in flood propagation and dam break flows over real geometries. The WDC has been incorporated into a cell centred finite volume method based on Roe's approximate Riemann solver across the edges of both structured and unstructured meshes. Previous wetting–drying condition based on steady‐state conditions lead to numerical errors in unsteady cases over configurations with strong variations on bed slope. A modification of the wetting–drying condition including the normal velocity to the cell edge enables to achieve zero numerical errors. The complete numerical technique is described in this work including source terms discretization as a complete and efficient 2D river flow simulation tool. Comparisons of experimental and numerical results are shown for some of the applications. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
The inviscid shallow water equations provide a genuinely hyperbolic system and all the numerical tools that have been developed for a system of conservation laws can be applied to them. However, this system of equations presents some peculiarities that can be exploited when developing a numerical method based on Roe's Riemann solver and enhanced by a slope limiting of MUSCL type. In the present paper a TVD version of the Lax-Wendroff scheme is used and its performance is shown in 1D and 2D computations. Then two specific difficulties that arise in this context are investigated. The former is the capability of this class of schemes to handle geometric source terms that arise to model the bottom variation. The latter analysis pertains to situations in which strict hyperbolicity is lost, i.e. when two eigenvalues collapse into one.  相似文献   

9.
The propagation, runup and rundown of long surface waves are numerically investigated, initially in one dimension, using a well‐balanced high‐resolution finite volume scheme. A conservative form of the nonlinear shallow water equations with source terms is solved numerically using a high‐resolution Godunov‐type explicit scheme coupled with Roe's approximate Riemann solver. The scheme is also extended to handle two‐dimensional complex domains. The numerical difficulties related to the presence of the topography source terms in the model equations along with the appearance of the wet/dry fronts are properly treated and extended. The resulting numerical model accurately describes breaking waves as bores or hydraulic jumps and conserves volume across flow discontinuities. Numerical results show very good agreement with previously presented analytical or asymptotic solutions as well as with experimental benchmark data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents details of a second‐order accurate, Godunov‐type numerical model of the two‐dimensional shallow water equations (SWEs) written in matrix form and discretized using finite volumes. Roe's flux function is used for the convection terms and a non‐linear limiter is applied to prevent unwanted spurious oscillations. A new mathematical formulation is presented, which inherently balances flux gradient and source terms. It is, therefore, suitable for cases where the bathymetry is non‐uniform, unlike other formulations given in the literature based on Roe's approximate Riemann solver. The model is based on hierarchical quadtree (Q‐tree) grids, which adapt to inherent flow parameters, such as magnitude of the free surface gradient and depth‐averaged vorticity. Validation tests include wind‐induced circulation in a dish‐shaped basin, two‐dimensional frictionless rectangular and circular dam‐breaks, an oblique hydraulic jump, and jet‐forced flow in a circular reservoir. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
We discuss the application of a finite volume method to morphodynamic models on unstructured triangular meshes. The model is based on coupling the shallow water equations for the hydrodynamics with a sediment transport equation for the morphodynamics. The finite volume method is formulated for the quasi‐steady approach and the coupled approach. In the first approach, the steady hydrodynamic state is calculated first and the corresponding water velocity is used in the sediment transport equation to be solved subsequently. The second approach solves the coupled hydrodynamics and sediment transport system within the same time step. The gradient fluxes are discretized using a modified Roe's scheme incorporating the sign of the Jacobian matrix in the morphodynamic system. A well‐balanced discretization is used for the treatment of source terms. We also describe an adaptive procedure in the finite volume method by monitoring the bed–load in the computational domain during its transport process. The method uses unstructured meshes, incorporates upwinded numerical fluxes and slope limiters to provide sharp resolution of steep bed gradients that may form in the approximate solution. Numerical results are shown for a test problem in the evolution of an initially hump‐shaped bed in a squared channel. For the considered morphodynamical regimes, the obtained results point out that the coupled approach performs better than the quasi‐steady approach only when the bed–load rapidly interacts with the hydrodynamics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A scheme for the numerical solution of the two-dimensional (2D) Euler equations on unstructured triangular meshes has been developed. The basic first-order scheme is a cell-centred upwind finite-volume scheme utilizing Roe's approximate Riemann solver. To obtain second-order accuracy, a new gradient based on the weighted average of Barth and Jespersen's three-point support gradient model is used to reconstruct the cell interface values. Characteristic variables in the direction of local pressure gradient are used in the limiter to minimize the numerical oscillation around solution discontinuities. An Approximate LU (ALU) factorization scheme originally developed for structured grid methods is adopted for implicit time integration and shows good convergence characterisitics in the test. To eliminate the data dependency which prohibits vectorization in the inversion process, a black-gray-white colouring and numbering technique on unstructured triangular meshes is developed for the ALU factorization scheme. This results in a high degree of vectorization of the final code. Numerical experiments on transonic Ringleb flow, transonic channel flow with circular bump, supersonic shock reflection flow and subsonic flow over multielement aerofoils are calculated to validate the methodology.  相似文献   

13.
We report on our recent efforts on the formulation and the evaluation of a domain decomposition algorithm for the parallel solution of two‐dimensional compressible inviscid flows. The starting point is a flow solver for the Euler equations, which is based on a mixed finite element/finite volume formulation on unstructured triangular meshes. Time integration of the resulting semi‐discrete equations is obtained using a linearized backward Euler implicit scheme. As a result, each pseudo‐time step requires the solution of a sparse linear system for the flow variables. In this study, a non‐overlapping domain decomposition algorithm is used for advancing the solution at each implicit time step. First, we formulate an additive Schwarz algorithm using appropriate matching conditions at the subdomain interfaces. In accordance with the hyperbolic nature of the Euler equations, these transmission conditions are Dirichlet conditions for the characteristic variables corresponding to incoming waves. Then, we introduce interface operators that allow us to express the domain decomposition algorithm as a Richardson‐type iteration on the interface unknowns. Algebraically speaking, the Schwarz algorithm is equivalent to a Jacobi iteration applied to a linear system whose matrix has a block structure. A substructuring technique can be applied to this matrix in order to obtain a fully implicit scheme in terms of interface unknowns. In our approach, the interface unknowns are numerical (normal) fluxes. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
Two time accurate local time stepping (LTS) strategies originally developed for the Euler equations are presented and applied to the unsteady shallow water equations of open channel flow. Using the techniques presented allows individual cells to be advanced to different points in time, in a time accurate fashion. The methods shown are incorporated into an explicit finite volume version of Roe's scheme which is implemented in conjunction with an upwind treatment for the source terms. A comparison is made between the results obtained using the conventional time stepping approach and the two LTS methods through a series of test cases. The results illustrate a number of benefits of using LTS which included reduced run times and improved solution accuracy. In addition it is shown how using an upwind source term treatment can be beneficial for flows dominated by the geometry. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
The aim of this work is to develop a well‐balanced finite‐volume method for the accurate numerical solution of the equations governing suspended sediment and bed load transport in two‐dimensional shallow‐water flows. The modelling system consists of three coupled model components: (i) the shallow‐water equations for the hydrodynamical model; (ii) a transport equation for the dispersion of suspended sediments; and (iii) an Exner equation for the morphodynamics. These coupled models form a hyperbolic system of conservation laws with source terms. The proposed finite‐volume method consists of a predictor stage for the discretization of gradient terms and a corrector stage for the treatment of source terms. The gradient fluxes are discretized using a modified Roe's scheme using the sign of the Jacobian matrix in the coupled system. A well‐balanced discretization is used for the treatment of source terms. In this paper, we also employ an adaptive procedure in the finite‐volume method by monitoring the concentration of suspended sediments in the computational domain during its transport process. The method uses unstructured meshes and incorporates upwinded numerical fluxes and slope limiters to provide sharp resolution of steep sediment concentrations and bed load gradients that may form in the approximate solutions. Details are given on the implementation of the method, and numerical results are presented for two idealized test cases, which demonstrate the accuracy and robustness of the method and its applicability in predicting dam‐break flows over erodible sediment beds. The method is also applied to a sediment transport problem in the Nador lagoon.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
An approximate (linearized) Riemann solver is presented for the solution of the Euler equations of gas dynamics in one spatial co-ordinate. This includes cylindrically and spherically symmetric geometries and also applies to narrow ducts with area variation. The method is Roe's flux difference splitting with a technique for dealing with source terms. The results of two problems, a spherically divergent infinite shock and a converging cylindrical shock, are presented. The numerical results compare favourably with those of Noh's recent survey and also with those of Ben-Artzi and Falcovitz using a more complicated Riemann solver.  相似文献   

17.
The Riemann solver is the fundamental building block in the Godunov‐type formulation of many nonlinear fluid‐flow problems involving discontinuities. While existing solvers are obtained either iteratively or through approximations of the Riemann problem, this paper reports an explicit analytical solution to the exact Riemann problem. The present approach uses the homotopy analysis method to solve the nonlinear algebraic equations resulting from the Riemann problem. A deformation equation defines a continuous variation from an initial approximation to the exact solution through an embedding parameter. A Taylor series expansion of the exact solution about the embedding parameter provides a series solution in recursive form with the initial approximation as the zeroth‐order term. For the nonlinear shallow‐water equations, a sensitivity analysis shows fast convergence of the series solution and the first three terms provide highly accurate results. The proposed Riemann solver is implemented in an existing finite‐volume model with a Godunov‐type scheme. The model correctly describes the formation of shocks and rarefaction fans for both one and two‐dimensional dam‐break problems, thereby verifying the proposed Riemann solver for general implementation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
19.
An incompressible Navier–Stokes solver based on a cell‐centre finite volume formulation for unstructured triangular meshes is developed and tested. The solution methodology makes use of pseudocompressibility, whereby the convective terms are computed using a Godunov‐type second‐order upwind finite volume formulation. The evolution of the solution in time is obtained by subiterating the equations in pseudotime for each physical time step, with the pseudotime step set equal to infinity. For flows with a free surface the computational mesh is fitted to the free surface boundary at each time step, with the free surface elevation satisfying a kinematic boundary condition. A ‘leakage coefficient’, ε, is introduced for the calculation of flows with a free surface in order to control the leakage of flow through the free surface. This allows the assumption of stationarity of mesh points to be made during the course of pseudotime iteration. The solver is tested by comparing the output with a wide range of documented published results, both for flows with and without a free surface. The presented results show that the solver is robust. © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
A vertex‐centred finite‐volume/finite‐element method (FV/FEM) is developed for solving 2‐D shallow water equations (SWEs) with source terms written in a surface elevation splitting form, which balances the flux gradients and source terms. The method is implemented on unstructured grids and the numerical scheme is based on a second‐order MUSCL‐like upwind Godunov FV discretization for inviscid fluxes and a classical Galerkin FE discretization for the viscous gradients and source terms. The main advantages are: (1) the discretization of SWE written in surface elevation splitting form satisfies the exact conservation property (??‐Property) naturally; (2) the simple centred‐type discretization can be used for the source terms; (3) the method is suitable for both steady and unsteady shallow water problems; and (4) complex topography can be handled based on unstructured grids. The accuracy of the method was verified for both steady and unsteady problems, including discontinuous cases. The results indicate that the new method is accurate, simple, and robust. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号