首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation of benzyl alcohol and methoxy-, chloro-, and nitro- substituted benzyl alcohols by permanganate has been studied in aqueous and acetic acid medium in presence of perchloric acid. The reaction is first-order in [MnO4?] and [XC6H4CH2OH], but the order is complex with respect to [H+]. Different thermodynamic parameters have been evaluated. The reaction occurs through the protonation of alcohol in a fast preequilibrium followed by a slow rate-determining oxidation step. A two-electron transfer oxidation step has been suggested for benzyl alcohol and chloro- and nitro- substituted alcohols, while the oxidation of methoxy compounds involves a one-electron transfer via a free-radical mechanism. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
The kinetics of the oxidation of a series of alcohols (viz., ethanol, propan-2-ol, butan-1-ol, butan-2-ol, heptan-4-ol, decan-2-ol, propan-1,3-diol, butan-2,3-diol, cyclohexanol, benzyl alcohol, and borneol) with the oxoammonium salt 2,2,6,6-tetramethylpiperidine-1-oxyl chlorite in acetonitrile was studied by spectrophotometry. The products of oxidation of primary alcohols are the corresponding aldehydes and carboxylic acids, and the products of oxidation of secondary alcohols are ketones. The reaction rate is described by the second order equation. The rate constants and activation parameters were determined. The rate constant as a function of the alcohol nature is described by the one-parameter Taft equation.  相似文献   

3.
The oxidation of thirty‐six monosubstituted benzaldehydes by hexa‐methylenetetramine‐bromine (HABR), in aqueous acetic acid solution, leads to the formation of the corresponding benzoic acids. The reaction is first order with respect to HABR. Michaelis‐Menten–type kinetics were observed with respect to aldehyde. The reaction failed to induce the polymerization of acrylonitrile. There is no effect of hexamethylenetetramine on the reaction rate. The oxidation of [2H]benzaldehyde (PhCDO) indicated the presence of a substantial kinetic isotope effect. The effect of solvent composition indicated that the reaction rate increases with an increase in the polarity of the solvent. The rates of oxidation of meta‐ and para‐substituted benzaldehydes showed excellent correlations in terms of Charton's triparametric LDR equation, whereas the oxidation of ortho‐substituted benzaldehydes correlated well with tetraparametric LDRS equation. The oxidation of para‐substituted benzaldehydes is more susceptible to the delocalization effect but the oxidation of ortho‐ and meta‐substituted compounds displayed a greater dependence on the field effect. The positive value of γ suggests the presence of an electron‐deficient reaction center in the rate‐determining step. The reaction is subjected to steric acceleration when ortho‐substituents are present. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 615–622, 2000  相似文献   

4.
A simple, efficient method for oxidation of primary and secondary alcohols to the corresponding aldehydes and ketones has been developed. Using RuCl3/Et3N as catalyst, the oxidation of benzyl alcohol with oxygen could be achieved with 332 h−1 turnover frequency in the absence of solvent. The influence of versatile N‐containing additives on the catalytic efficiency has been discussed. The presence of minor water would substantially promote the catalytic efficiency, and its role in catalysis has been investigated in detail. The insensitive Hammett correlations of the substituted benzyl alcohols, the normal substrate isotope effect (kH/kD = 3.5 at 335 K), and the linear relationship between O2 pressure and turnover frequency imply that the reoxidation of the Ru(III) hydride intermediate to the active species shares the rate‐determining step with the hydride transfer in the catalytic cycle. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Lai S  Lepage CJ  Lee DG 《Inorganic chemistry》2002,41(7):1954-1957
The oxidation of methoxy substituted benzyl phenyl sulfides can be used to distinguish between oxidants that react by single electron transfer (followed by oxygen rebound) and those which react by direct oxygen atom transfer in a two-electron process. Transfer of a single electron results in the formation of an intermediate radical cation, which can undergo C-S bond cleavage and deprotonation reactions leading to the formation of methoxy substituted benzyl derivatives, methoxy substituted benzaldehydes, and diphenyl disulfide. The oxidation of 4-methoxybenzyl phenyl sulfide and 3,4,5-trimethoxybenzyl phenyl sulfide by oxidants known to participate in single electron transfers (Ce(4+), Mn(3+), and Cr(6+)) results in the formation of the corresponding benzaldehydes, benzyl alcohols, benzyl acetates, and benzyl nitrates in variable yields. However, the only products obtained from the oxidation of the same compounds with RuO(4), RuO(4-), and RuO(4)(2-) are sulfoxides and sulfones. Therefore, it is concluded that the oxidation of sulfides by oxoruthenium compounds likely proceeds by a concerted mechanism.  相似文献   

6.
The oxidation of [RuIII(hedta)(H2O)]=(1) to its RuIV monomeric complex at a glassy carbon electrode is abserved to promote oxidation of alcohols bearing an a-hydrogen (i-PrOH benzyl alcohol,sec-phenethyl alcohol). Tertiary substitution blocks the oxidation (t-BuOH). The oxidation of the alcohols is detected by an enhancement in the current of the RuIV/III waves at potentials above 0.96V, caused by scavenging (reduction) of RuIV by the alcohols. Binuclear complexes which possess RuIV bridged by oxo to either a second RuIV or to RuIII in species of composition [LRuORuL]n−, L=hedta3−, fail to oxidize the alcohols. The terminal oxo moiety attached to RuIV is postulated to facilitate the oxidation of primary and secondary alcohols in a manner analogous to Meyer's [RuO(trpy)(bpy)]2+ catalyst. The dissociation of the (III,IV) binuclear complex into its monomers provides a pathway which increases catalytic activity at the expense of the inactive (III, IV) binuclear complex's concentration. TMC 2531  相似文献   

7.
Selective and controlled aerobic oxidation of activated benzyl alcohols to the corresponding aldehydes is achieved in refluxing CH3CN using catalytic amounts of MoO2Cl2(L)2 where L is DMSO, DMF or THF. The catalysis reactions are possible under open air in the absence of any other external co‐oxidants. However, bubbling of oxygen to the reaction mixture is useful in making the catalysis reaction sustained. Both activated and deactivated varieties of α‐substituted benzyl alcohols (secondary alcohols) give ketones in the same reaction conditions. The inexpensive catalyst is selective towards activated primary benzyl alcohols and also, being mild, stops the oxidation at the aldehyde stage, making it synthetically useful. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Tingting Chen 《合成通讯》2013,43(11):1334-1341
An efficient and selective oxidation of benzyl alcohols has been developed using a salophen copper(II) complex as the catalyst and tert-butyl hydroperoxide (TBHP) as the oxidant in the presence of base. Moderate to excellent yields of the corresponding benzaldehydes were obtained at room temperature without the carboxylic acids being formed.  相似文献   

9.
Tetrakis[heptadecafluorononyl] substituted phthalocyanine complexes were prepared by template synthesis from 4‐(heptadecafluorononyloxy)phthalonitrile with Co(CH3COO)·2H2O or PdCl2 in 2‐N, N‐dimethylaminoethanol. The corresponding phthalonitrile was obtained from heptadecafluorononan‐1‐ol and 4‐nitrophthalonitrile with K2CO3 in DMF at 50 °C. The structures of the compounds were characterized by elemental analysis, FTIR, UV–vis and MALDI‐TOF MS spectroscopic methods. Metallophthalocyanines are soluble in fluoroalkanes such as perfluoromethylcyclohexane (PFMCH). The complexes were tested as catalysts for benzyl alcohol oxidation with tert‐butylhydroperoxide (TBHP) in an organic–fluorous biphasic system (n‐hexane–PFMCH). The oxidation of benzyl alcohol was also tested with different oxidants, such as hydrogen peroxide, m‐chloroperoxybenzoic acid, molecular oxygen and oxone in n‐hexane–PFMCH. TBHP was found to be the best oxidant for benzyl alcohol oxidation since higher conversion and selectivity were observed when this oxidant was used. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Summary The oxidation ofDL-methionine (MT) bybis(2,2-bipyridyl)copper(II) permanganate (BBCP) to the corresponding sulphoxide is first order in BBCP. Michaelis-Menten-type kinetics were observed with respect to MT. The formation constant of the intermediate complex and the rate constant for its decomposition were evaluated. The thermodynamic and activation parameters were also evaluated. The reaction is catalysed by H+ but 2,2-bipyridine does not affect the reaction rate. A mechanism is proposed.  相似文献   

11.
The preparation of bis(2,2'-bipyridyl)copper(II) permanganate (BBCP) is described. The reagent converts alcohols to the corresponding carbonyl compounds, α-hydroxy ketones to diketones, hydroquinone to p-benzoquinone, and compounds with benzylic double bonds to benzaldehyde in high yield. Benzophenone oxime, acetophenone oxime and various benzaldoximes are converted to the corresponding carbonyl compounds, aromatic amines to azo compounds, and benzylamine to benzaldehyde, usually in high yields, under mild condition.  相似文献   

12.
Solid-supported nano- and microparticles of Pd(0) (SS-Pd) were used as heterogeneous catalysts for aerobic oxidation of benzyl alcohols. Primary and secondary benzyl alcohols gave the corresponding products in good yields. In addition, the catalysts could be reused up to five runs without significant loss of activities.  相似文献   

13.
A new reaction sequence for the synthesis of the sesquiterpene arenes (±)‐wiedendiol B ((±)‐ 1 ) and the siphonodictyal B derivative (±)‐ 21 consists in the coupling of (±)‐drimanoyl chloride ((±)‐ 3 ) with lithiated and appropriately substituted aromatic synthons to furnish the ketones (±)‐ 7 and (±)‐ 17 which were reduced to the benzyl alcohols (±)‐ 8a,b and (±)‐ 18a,b , respectively (Schemes 5, 4, and 12). The 9,11‐double bond of the drimenes (±)‐ 9 and (±)‐ 19 was formed by elimination of H2O from the benzyl alcohols (±)‐ 8a,b and (±)‐ 18a,b (Schemes 6 and 12). New alternatives were applied to this elimination reaction involving either the pyridine ? SO3 complex or chloral as reagents.  相似文献   

14.
赵宙兴 《应用化学》2013,30(2):148-152
以苄基醇、二甲亚砜(DMSO)和烷基醇为原料,采用三组分一锅法合成了一系列(E)-β-(烷氧基)苯乙烯类化合物。 该法具有产率高(68%~82%)、操作简单、后处理方便等优点。 产物的结构通过核磁共振谱和元素分析证实,同时给出了可能的反应机理。  相似文献   

15.
The hydroxyl proton chemical shift in substituted benzyl alcohols may be used, either at infinite dilution in CCl4, or in dilute solutions in DMSO, as a reliable indicator of substituent effects. The sensitivity of the hydroxyl proton to substituents is much greater than that of the methylene protons, and this is shown to be due to an increased dependence of the hydroxyl proton on the field effect of the substituent. The percent resonance contribution to the OH chemical shifts is identical in benzyl alcohols and phenols.  相似文献   

16.
Pan Z  Newcomb M 《Inorganic chemistry》2007,46(16):6767-6774
The kinetics of the reactions of three porphyrin-iron(IV)-oxo derivatives with alkenes and benzylic alcohols were measured. The iron-oxo systems studied were 5,10,15,20-tetrakis(2,6-dichlorophenyl)porphyrin-iron(IV)-oxo (2a), 5,10,15,20-tetrakis(2,6-difluorophenyl)porphyrin-iron(IV)-oxo (2b), and 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin-iron(IV)-oxo (2c). Species 2 were stable for hours at room temperature as dilute solutions in acetonitrile and reacted hundreds to thousands of times faster in the presence of high concentrations of substrates. Typical second-order rate constants determined from pseudo-first-order kinetic studies are 1-2 x 10(-2) M(-1) s(-1) for reactions with styrene and 3 x 10(-2) M(-1) s(-1) for reactions with benzyl alcohol. The reactivity order for the iron-oxo species was 2a > 2b > 2c, which is inverted from that expected on the basis of the electron demand of the porphyrin macrocycles, and the oxidation reaction was suppressed when excess porphyrin-iron(III) complex was added to reaction mixtures. These observations indicate that the reactions involve disproportionation of the iron(IV)-oxo species 2 to give an iron(III) species and a more highly oxidized iron species, presumed to be an iron(IV)-oxo porphyrin radical cation, that is the true oxidant in the reactions. Analyses of the kinetics of oxidations of a series of para-substituted benzylic alcohols with Hammett sigma+ -substituent constants and with a dual-parameter method developed by Jiang (Jiang, X. K. Acc. Chem. Res. 1997, 30, 283) indicated that considerable positive charge developed on the benzylic carbons in the oxidation reactions, as expected for electrophilic oxidants, and also that substantial radical character developed on the benzyl carbon in the transition states.  相似文献   

17.
In this study, a modular ligand structure was designed by altering the binding position of the phenyl group at backbone of hydrobenzoin. A series of regio isomeric substituted phthalonitriles derived from this modular C2-symmetric ligand was synthesized and characterized. Then, eight cobalt (II) phthalocyanines (CoPc) were obtained from the reaction of phthalonitrile derivatives with cobalt (II) chloride. The catalytic activities of synthesized cobalt (II) phthalocyanines were tested for benzyl alcohol oxidation in acetonitrile using tert-butylhydroperoxide as the oxygen source and in the presence of N-bromosuccinimide as an additive at 80 °C for 5 hr of the reaction. In this sense, the effect of substrate to catalyst ratio and oxidant to catalyst ratio have been studied in detail for getting the highest benzaldehyde selectivity (up to 83%). The effect of structural design of substituents at peripheral or non-peripheral positions of phthalocyanine skeleton on the catalytic activity performance of cobalt (II) phthalocyanines in benzyl alcohol oxidation was also clarified. All newly synthesized compounds are characterized by FT-IR, 1H NMR, IR, UV–Vis and MALDI-TOF MS spectral data.  相似文献   

18.
The system (nBu4N)ReO4 5/PhIO/CH2Cl2, T = 298 K catalyses effectively and with total selectivity the anaerobic oxidation of a range of primary substituted benzyl alcohols (o-, m-, p-X-C6H4-CH2OH, X = H, Me, MeO, Cl, NO2, CF3) to the corresponding aldehydes; in contrast, it is unreactive towards secondary benzyl and aliphatic (primary and secondary) alcohols. This may prove of interest in synthetic organic transformations, when several alcoholic functionalities are present in the same molecule.  相似文献   

19.
The vanadium phosphorous oxide (VPO) catalysts, supported on mesoporous hexagonal molecular sieves (HMS) with different vanadium loadings, were prepared by precipitation method on organic phase. Techniques such as XRD, BET and SEM, were used for characterization of the catalyst. The bulk VPO catalyst contains vanadyl pyrophosphate phase ((VO)2P2O7), and a small amount of VOPO4. The high surface area, large pore volume and pore size of HMS in VPO/HMS samples, provide an excellent dispersion of same phase of VPO compound on the support surface. Oxidation of various alcohols was studied in the liquid phase over VPO/HMS catalyst, using tert‐butylhydroperoxide (TBHP) as an oxidant. The activity of VPO/HMS samples were considerably increased with respect to bulk VPO catalyst. At 90 °C, the obtained activities were 0.567 and 6.545 gpro.g?1VPOh?1 over the bulk VPO and 20 wt% VPO/HMS catalysts, respectively. The effects of substrates, reaction time, reaction temperature, solvents, catalyst recycling and leaching of VPO in liquid phase reaction were also investigated. The following order has been observed for the percentage of conversions of alcohols: Benzylic alcohol > Secondary alcohol ~ Primary alcohol. The kinetic of benzyl alcohol oxidation using excess TBHP over VPO/HMS catalyst was investigated at temperatures of 27, 60 and 90 °C, and followed a pseudo‐first order with respect to benzyl alcohol.  相似文献   

20.
A novel room temperature ionic liquid (RTIL) has been prepared containing a cyclic hexaalkylguanidinium cation. The selective oxidation of a series of substituted benzyl alcohols has been carried out in it, with sodium hypochlorite as the oxidant. The RTIL acts as both phase transfer catalyst (PTC) and solvent. The ionic liquid could be recycled after extraction of the benzaldehyde product with ether.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号