首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 382 毫秒
1.
The pKa of the conjugate acids of alkanolamines, neurotransmitters, alkaloid drugs and nucleotide bases are calculated with density functional methods (B3LYP, M08‐HX and M11‐L) and ab initio methods (SCS‐MP2, G3). Implicit solvent effects are included with a conductor‐like polarizable continuum model (CPCM) and universal solvation models (SMD, SM8). G3, SCS‐MP2 and M11‐L methods coupled with SMD and SM8 solvation models perform well for alkanolamines with mean unsigned errors below 0.20 pKa units, in all cases. Extending this method to the pKa calculation of 35 nitrogen‐containing compounds spanning 12 pKa units showed an excellent correlation between experimental and computational pKa values of these 35 amines with the computationally low‐cost SM8/M11‐L density functional approach.  相似文献   

2.
Macroscopic pKa values were calculated for all compounds in the SAMPL6 blind prediction challenge, based on quantum chemical calculations with a continuum solvation model and a linear correction derived from a small training set. Microscopic pKa values were derived from the gas-phase free energy difference between protonated and deprotonated forms together with the Conductor-like Polarizable Continuum Solvation Model and the experimental solvation free energy of the proton. pH-dependent microstate free energies were obtained from the microscopic pKas with a maximum likelihood estimator and appropriately summed to yield macroscopic pKa values or microstate populations as function of pH. We assessed the accuracy of three approaches to calculate the microscopic pKas: direct use of the quantum mechanical free energy differences and correction of the direct values for short-comings in the QM solvation model with two different linear models that we independently derived from a small training set of 38 compounds with known pKa. The predictions that were corrected with the linear models had much better accuracy [root-mean-square error (RMSE) 2.04 and 1.95 pKa units] than the direct calculation (RMSE 3.74). Statistical measures indicate that some systematic errors remain, likely due to differences in the SAMPL6 data set and the small training set with respect to their interactions with water. Overall, the current approach provides a viable physics-based route to estimate macroscopic pKa values for novel compounds with reasonable accuracy.  相似文献   

3.
Complete basis set and Gaussian‐n methods were combined with Barone and Cossi's implementation of the polarizable conductor model (CPCM) continuum solvation methods to calculate pKa values for six carboxylic acids. Four different thermodynamic cycles were considered in this work. An experimental value of ?264.61 kcal/mol for the free energy of solvation of H+, ΔGs(H+), was combined with a value for Ggas(H+) of ?6.28 kcal/mol, to calculate pKa values with cycle 1. The complete basis set gas‐phase methods used to calculate gas‐phase free energies are very accurate, with mean unsigned errors of 0.3 kcal/mol and standard deviations of 0.4 kcal/mol. The CPCM solvation calculations used to calculate condensed‐phase free energies are slightly less accurate than the gas‐phase models, and the best method has a mean unsigned error and standard deviation of 0.4 and 0.5 kcal/mol, respectively. Thermodynamic cycles that include an explicit water in the cycle are not accurate when the free energy of solvation of a water molecule is used, but appear to become accurate when the experimental free energy of vaporization of water is used. This apparent improvement is an artifact of the standard state used in the calculation. Geometry relaxation in solution does not improve the results when using these later cycles. The use of cycle 1 and the complete basis set models combined with the CPCM solvation methods yielded pKa values accurate to less than half a pKa unit. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

4.
CBS-QB3, two simplified and less computationally demanding versions of CBS-QB3, DFT-B3LYP, and HF quantum chemistry methods have been used in conjunction with the CPCM continuum solvent model to calculate the free energies of proton exchange reactions in water solution following an isodesmic reaction approach. According to our results, the precision of the predicted pK a values when compared to experiment is equivalent to that of the thermodynamic cycles that combine gas-phase and solution-phase calculations. However, in the aqueous isodesmic reaction schema, the accuracy of the results is less sensitive to the presence of explicit water molecules and to the global charges of the involved species since the free energies of solvation are not required. In addition, this procedure makes easier the prediction of pK a values for molecules that undergo large conformational changes in solvation process and makes possible the pK a prediction of unstable species in gas-phase such as some zwitterionic tautomers. The successive pK a values of few amino acids corresponding to the ionization of the α-carboxylic acid and α-amine groups, which is one of the problematic cases for thermodynamic cycles, were successfully calculated by employing the aqueous isodesmic reaction yielding mean absolute deviations of 0.22 and 0.19 pK a units for the first and second ionization processes, respectively.  相似文献   

5.
The physical properties of chemicals are strongly influenced by their protonation state, affecting, for example, solubility or hydrogen-bonding characteristics. The ability to accurately calculate protonation states in the form of pK as is, therefore, desirable. Calculations of pK a changes in a series of substituted pyridines are presented. Computations were performed using both ab initio and semiempirical approaches, including free energies of solvation via reaction-field models. The selected methods are readily accessible with respect to both software and computational feasibility. Comparison of calculated and experimental pK as shows the experimental trends to be reasonably reproduced by the computations with root-mean-square differences ranging from 1.22 to 4.14 pK a units. Of the theoretical methods applied the best agreement occurred using the second-order M?ller–Plesset/6-31G(d)/isodensity surface polarized continuum solvation model, while the more computationally accessible Austin model 1/Solvent model 2 (SM2) approach yielded results similar to the ab initio methods. Analysis of component contributions to the calculated pK as indicates the largest source of error to be associated with the free energies of solvation of the protonated species followed by the gas-phase protonation energies; while the latter may be improved via the use of higher levels of theory, enhancements in the former require improvements in the solvation models. The inclusion of alternate minimum in the computation of pK as is also indicated to contribute to differences between experimental and calculated pK a values. Received: 27 April 1999 / Accepted: 27 July 1999 / Published online: 2 November 1999  相似文献   

6.
In this study, the relative pKa values of nine anilinium derivatives in methanol (MeOH), acetonitrile (AN), and tetrahydrofurane (THF) solutions were successfully calculated with mean absolute deviations of 0.63, 0.68, and 0.75 pKa units, respectively. To this aim, their gas‐phase basicities were computed using the CBS‐QB3 composite method. Also, conductor‐like polarizable continuum model (CPCM) with UAHF, UAKS and UA0 cavities and SM8 solvation models at HF/6‐31+G(d) level of theory were applied for the calculation of the solvation Gibbs free energies. The obtained results indicate that there is reliable correlation between the experimental and computed pKa values in the studied solutions. Therefore, to extend the pKa database for anilines, correlation equations were used to predict the pKa values in the investigated solvents.  相似文献   

7.
A thermodynamic cycle to calculate pKa values (Minus log of acid dissociation constants) of hydroxamic acids is presented. Hydroxamic acids exist mainly as amide isomers in the aqueous medium. The amide form of hydroxamic acids has two deprotonation sites and may yield either an N-ion or an O-ion upon deprotonation. The thermodynamic cycle proposed includes the gas-phase N–H deprotonation of the hydroxamic acid, the solvent phase transformation of the N-ion to the O-ion and the solvation of the hydroxamic acid molecule and the O-ion in water. The CBS-QB3 method was employed to obtain gas-phase free energy differences between 12 hydroxamic acids and their respective anions. The aqueous solvation Gibbs free energy changes were calculated at the HF/6-31G(d)/CPCM and HF/6-31+G(d)/CPCM levels of theory using HF/6-31+G(d)/CPCM geometries. For the proton, literature values of the gas-phase free energy of formation and the solvation free energy change were used. The free energy change for the transformation of the N-ion to O-ion in the aqueous medium was calculated by employing CBS-QB3/CPCM in the aqueous medium. For this, the hydroxamic acids were divided in two classes according to the substituent at the carbonyl carbon. A common transformation free energy difference for aliphatic substituted hydroxamic acids and a separate common transformation free energy difference for aromatic substituted hydroxamic acids were obtained. The pKa calculation yielded a root mean square error of 0.32 pKa units.  相似文献   

8.
In this work, quantum mechanical methods were used to predict the microscopic and macroscopic pKa values for a set of 24 molecules as a part of the SAMPL6 blind challenge. The SMD solvation model was employed with M06-2X and different basis sets to evaluate three pKa calculation schemes (direct, vertical, and adiabatic). The adiabatic scheme is the most accurate approach (RMSE?=?1.40 pKa units) and has high correlation (R2?=?0.93), with respect to experiment. This approach can be improved by applying a linear correction to yield an RMSE of 0.73 pKa units. Additionally, we consider including explicit solvent representation and multiple lower-energy conformations to improve the predictions for outliers. Adding three water molecules explicitly can reduce the error by 2–4 pKa units, with respect to experiment, whereas including multiple local minima conformations does not necessarily improve the pKa prediction.  相似文献   

9.
A convenient computational approach for the calculation of the p Kas of ionizable groups in a protein is described. The method uses detailed models of the charges in both the neutral and ionized form of each ionizable group. A full derivation of the theoretical framework is presented, as are details of its implementation in the UHBD program. Application to four proteins whose crystal structures are known shows that the detailed charge model improves agreement with experimentally determined pKas when a low protein dielectric constant is assumed, relative to the results with a simpler single-site ionization model. It is also found that use of the detailed charge model increases the sensitivity of the computed pKas to the details of proton placement. © 1996 by John Wiley & Sons, Inc.  相似文献   

10.
11.
In this work, calculations of pKa values have been performed on benzoic acid and its para‐substituted derivatives and some drugs by using Gaussian 98 software package. Gas‐phase energies were calculated with HF/6‐31 G** and B3LYP/6‐31 G** levels of theory. Free energies of solvation have been computed using the polarizable continuum model (PCM), conductor‐like PCM (CPCM), and the integral equation formalism‐PCM at the same levels which have been used for geometry determination in the gas‐phase. The results that show the calculated pKa values using the B3LYP are better than those using the corresponding HF. In comparison to the other models, the results obtained indicate that the PCM model is a suitable solvation model for calculating pKa values. For the investigated compounds, a good agreement between the experimental and the calculated pKa values was also observed. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

12.
The H-bonded complexes between 2-dimethylamino-3,3-dimethyl-1-azirine (TMAAZ) and some phenol derivatives have been studied by IR spectrometry in carbon tetrachloride. The equilibrium constants at 300, 315 and 328 K and the ? ΔH°, ? ΔνOH and ΔνCN values have been determined. The comparison with previously studied OH … N complexes shows that TMAAZ forms stronger complexes than would be expected from the pKa value. These facts are discussed in terms of steric, hybridization, solvation and charge transfer effects. From a pKa of 8, the IR spectrum shows the appearance of ion pairs N+-H …?O. A predominance of protonated species can be calculated for a pKa of 6. This can explain why 1,2-ring cleavage whose first step is probably the formation of an azirinium cation, occurs for acids characterized by pKa values lower than 5 but not for enolizable ketones having pKa values higher than 9.  相似文献   

13.
Anna Hajduk  Nadin Ulrich 《Electrophoresis》2023,44(17-18):1353-1360
The acidity constant in the form of pKa is one of the most important physicochemical quantities. There are prediction tools available for calculating the pKa, but they only deliver precise calculated values for a relatively small set of chemicals. For complex structures with multiple functional groups in particular, the error in the predicted pKa is high due to the application domain of the corresponding models. Thus, we aim to enlarge the dataset of experimentally determined pKa values using capillary electrophoresis. We, therefore, selected various pyridines, imidazoles, and oximes to determine the pKa values using the internal standard approach and the classical method. Especially oximes were not investigated in the past, and predictions for them include larger errors. Thus, our experimentally determined values could contribute to an improved understanding of various functional groups impacting the pKa values and serve as additional datasets to develop improved pKa prediction tools.  相似文献   

14.
We have computed pKa values for 11 substituted phenol compounds using the continuum Fuzzy‐Border (FB) solvation model. Hydration energies for 40 other compounds, including alkanes, alkenes, alkynes, ketones, amines, alcohols, ethers, aromatics, amides, heterocycles, thiols, sulfides, and acids have been calculated. The overall average unsigned error in the calculated acidity constant values was equal to 0.41 pH units and the average error in the solvation energies was 0.076 kcal/mol. We have also reproduced pKa values of propanoic and butanoic acids within about 0.1 pH units from the experimental values by fitting the solvation parameters for carboxylate ion carbon and oxygen atoms. The FB model combines two distinguishing features. First, it limits the amount of noise which is common in numerical treatment of continuum solvation models by using fixed‐position grid points. Second, it uses either second‐ or first‐order approximation for the solvent polarization, depending on a particular implementation. These approximations are similar to those used for solute and explicit solvent fast polarization treatment which we developed previously. This article describes results of using the first‐order technique. This approximation places the presented methodology between the Generalized Born and Poisson‐Boltzmann continuum solvation models with respect to their accuracy of reproducing the many‐body effects in modeling a continuum solvent. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
We have obtained 5-phenyltetrazol-2-ylalkanoic acids and their derivatives containing terminal nitrile, amide, and tetrazol-5-yl groups. Tetrazolylalkanoic acids with two (pK a 4.93) and three (pK a 5.45) bridging methylene groups are weaker acids than the corresponding ditetrazoles pK a 4.68 and 5.29 respectively). However, the acidity of 5-phenyltetrazol-2-ylacetic acid (pK a 3.12), is higher than acidity of the corresponding ditetrazole (pK a 3.27).  相似文献   

16.
The results of a QSPR study of the toxicity of carboxylic acids in aqueous solution are reported. The molecular set comprises 35 carboxylic acids with the corresponding pK a values in water. The set of molecular and topological parameters includes electrotopological state of the carboxy and methyl groups, molar refractivity, refractive index, n-octanol-water partition coefficient logKo/w, surface tension, and polarizability. Quite reasonable estimates are obtained, which improve the results of previous theoretical calculations.  相似文献   

17.
The ionization (dissociation) constant (pKa) is one of the most important properties of a drug molecule. It is reported that almost 68% of ionized drugs are weak bases. To be able to predict accurately the pKa value(s) for a drug candidate is very important, especially in the early stages of drug discovery, as calculations are much cheaper than determining pKa values experimentally. In this study, we derive two linear fitting equations (pKa = a × ΔE + b; where a and b are constants and ΔE is the energy difference between the cationic and neutral forms, i.e., ΔE = Eneutral?Ecationic) for predicting pKas for organic bases in aqueous solution based on a training/test set of almost 500 compounds using our previously developed protocol (OLYP/6‐311+G**//3‐21G(d) with the the conductor‐like screening model solvation model, water as solvent; see Zhang, Baker, Pulay, J. Phys. Chem. A 2010 , 114, 432). One equation is for saturated bases such as aliphatic and cyclic amines, anilines, guanidines, imines, and amidines; the other is for unsaturated bases such as heterocyclic aromatic bases and their derivatives. The mean absolute deviations for saturated and unsaturated bases were 0.45 and 0.52 pKa units, respectively. Over 60% and 86% of the computed pKa values lie within ±0.5 and ±1.0 pKa units, respectively, of the corresponding experimental values. The results further demonstrate that our protocol is reliable and can accurately predict pKa values for organic bases. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Two members of the green fluorescent protein family, the purple asFP595 and yellow zFP538 proteins, are perspective fluorescent markers for use in multicolor imaging and resonance energy-transfer applications. We report the results of quantum based calculations of the solution pKa values for selected protonation sites of the denatured asFP595 and zFP538 chromophores in the trans- and cis-conformations in order to add in the interpretation of photo-physical properties of these proteins. The pKa values were determined from the theromodynamic cycle based on B3LYP/6-311++G(2df, 2p) calculations of the gas phase free energies of the molecules and the B3LYP/6-311++G(d, p) calculations of solvation energies. The results show that the pKa’s of the protonation sites of the chromophore from asFP595 noticeably depend on the isomer conformation (cis- or trans-), while those of zFP538 are much less sensitive to isomerization.  相似文献   

19.
A fast, empirical method, Mut‐pKa, is presented for predicting the pKa values of ionizable residues in proteins based on mutation. The method compares the effect of mutating each residue that may act as a hydrogen bond donor or acceptor for the ionizable residue. The energetic effect of each type of mutation, along with a desolvation measure and the overall background charge, is fit against pKa data for histidine and carboxyl residues. A total of 214 residues from 35 different proteins were used in the dataset. Using 11 parameters for each type of ionizable residue, a root mean squared error (RMSE) of 0.78 and 1.12 pH units were obtained for carboxyl and histidines residues, respectively, using leave one out cross validation (LOOCV). The results were particularly promising for buried residues, which had RMSE values of 0.99 and 1.13 for carboxyl and histidine residues, respectively. A number of desolvation measures were tested. The simplest measure, the number of atoms surrounding the residue, was found to work best. The effect of using dynamics was also studied using short molecular dynamics runs, followed by minimization of the structures. Mut‐pKa has significantly fewer parameters than, but similar performance to, other empirical methods. Because of this and the LOOCV results, we believe the model is robust and that overfitting is not a problem. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

20.
Summary The pK a * values of 10 nitrogen-containing basic drugs in non-aqueous acetonitrile were determined from the pH* dependence of their electrophoretic mobilities. The pH* scale in the organic solvent was established using background electrolytes with known conventional pK a * values, making further calibration with reference pH electrodes unnecessary. In acetonitrile the pK a * values of analytes (or their conjugated cation acids, BH+, respectively) were 5.2±8.9 pK units>those in water. The observed change in pK a * values of cationic analytes was, however, much less than the known respective change for neutral acids type HA. From the pK a * values and the actual mobilities, it is possible to predict pH* conditions to enable separation of analytes, and this was demonstrated for two pairs of common drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号