首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The correlation of the K-region carcinogenicity indices of Pullman and of Mainster and Memory with bay-region carbocation delocalization energy (BCDE ) is displayed and shown to be maintained at the perturbational molecular orbital (PMO ) level. PMO algebraic relations are examined to reveal the underlying relationships. Some correlation between BCDE and K-region indices exists simply because carbocation formation occurs preferentially on carbons which are bonded to positions α (adjacent) to ring fusion centers. Sampling a K region is synonymous with sampling such α carbons. However PMO analysis shows that a very strong correlation exists between BCDE and indices for a certain type of K region (called “primitive”). It is further shown that high BCDE is favored by a straight-line chain of benzene rings as one moves away from the bay region. Kinks in the chain will lower the BCDE , and the closer the kink is to the bay region, the greater is its effect. Effects of methylation upon BCDE are shown to correlate with K-region indices if the methylation occurs at a carbon which is in the opposite class as the carbon to which the bay-region carbocation is attached.  相似文献   

2.
有机化合物的光谱及激发能存在着良好的同系线性规律。前文曾用HMO法对多联苯体系的同系线性规律进行了讨论,说明了对联多苯的共轭作用比间联多苯强,而后者共轭作用很弱,这可从光谱得到证实。近来,徐光宪等探讨了同系线性规律的量子化学基础,根据多烯中键长交替现象提出了MHMO法。  相似文献   

3.
With the aid of preparative layer chromatography several compounds could be isolated from a mixture of acetylated phenols obtained from Halidrys siliquosa (L.) Lyngbye. Peracetylated heptafuhalol as well as its deacetylpermethyl derivative were examined by MS, IR, 1H NMR and 13C NMR methods. Other constituents are probably lower members of a homologous series with 6, 5 and 4 phloroglucinol nuclei, respectively. The established building principle is also valid for a “high molecular mass polymer” fraction of acetylated phenols from Halidrys. The free phenols have the properties of tannins, and will be denoted phlorotannins.  相似文献   

4.
The combined use of a metal‐complex catalyst and an enzyme is attractive, but typically results in mutual inactivation. A rhodium (Rh) complex immobilized in a bipyridine‐based periodic mesoporous organosilica (BPy‐PMO) shows high catalytic activity during transfer hydrogenation, even in the presence of bovine serum albumin (BSA), while a homogeneous Rh complex exhibits reduced activity due to direct interaction with BSA. The use of a smaller protein or an amino acid revealed a clear size‐sieving effect of the BPy‐PMO that protected the Rh catalyst from direct interactions. A combination of Rh‐immobilized BPy‐PMO and an enzyme (horse liver alcohol dehydrogenase; HLADH) promoted sequential reactions involving the transfer hydrogenation of NAD+ to give NADH followed by the asymmetric hydrogenation of 4‐phenyl‐2‐butanone with high enantioselectivity. The use of BPy‐PMO as a support for metal complexes could be applied to other systems consisting of a metal‐complex catalyst and an enzyme.  相似文献   

5.
Enhanced fluorescence detection of metal ions was realized in a system consisting of a fluorescent 2,2′‐bipyridine (BPy) receptor and light‐harvesting periodic mesoporous organosilica (PMO). The fluorescent BPy receptor with two silyl groups was synthesized and covalently attached to the pore walls of biphenyl (Bp)‐bridged PMO powder. The fluorescence intensity from the BPy receptor was significantly enhanced by the light‐harvesting property of Bp‐PMO, that is, the energy funneling into the BPy receptor from a large number of Bp groups in the PMO framework which absorbed UV light effectively. The enhanced emission of the BPy receptor was quenched upon the addition of a low concentration of Cu2+ (0.15–1.2×10?6 M ), resulting in the sensitive detection of Cu2+. Upon titration of Zn2+ (0.3–6.0×10?6 M ), the fluorescence excitation spectrum was systematically changed with an isosbestic point at 375 nm through 1:1 complexation of BPy and Zn2+ similar to that observed in BPy‐based solutions, indicating almost complete preservation of the binding property of the BPy receptor despite covalent fixing on the solid surface. These results demonstrate that light‐harvesting PMOs have great potential as supporting materials for enhanced fluorescence chemosensors.  相似文献   

6.
《中国化学快报》2023,34(4):107410
Aqueous zinc-ion batteries (ZIBs) have attracted significant attentions because of low cost and high reliability. However, conventional ZIBs are severely limited by the development of high energy density cathode materials with reversible Zn2+ insertion/extraction. Herein, a conducting polymer intercalated MoO3 (PMO) with extensively extended interlayer spacing is developed as a high-performance ZIBs cathode material. The interlayer spacing of PMO is prominently increased which results in an improved Zn2+ mobility during charge and discharge process. More significantly, the electrochemical results reveals that the intercalation of PANI facilitates the charge storage and reinforces the layered structure of MoO3, leading to a high capacity and good cycling stability. DFT calculation further reveals the intercalation of PANI into MoO3 significantly lower Zn2+ diffusion barrier. Benefit from these advantages, the ZIBs based on PMO electrode delivers a considerable capacity of 157 mAh/g at 0.5 A/g and ameliorative stability with 63.4% capacity retention after 1000 cycles.  相似文献   

7.
A new series of carbamothioic acid‐containing periodic mesoporous organosilica (PMO) materials has been synthesized by a direct cocondensation method, in which an organosilica precursor N,S‐bis[3‐(triethoxysilyl)propyl]carbamothioic acid (MI) is treated with tetraethyl orthosilicate (TEOS), and the nonionic surfactant Pluronic 123 (P123) is used as a template under acidic conditions in the presence of inorganic additives. Moreover, the synthesis of the PMO material consisting of the MI precursor without TEOS has been realized. These novel PMO materials have large surface areas, well‐ordered mesoporous structures, hollow fiberlike morphologies, and thick walls. They are also structurally well‐ordered with a high organosilica precursor content, and the carbamothioic acid groups are thermally stable up to 250 °C. Furthermore, the organosilica materials exhibit hydrothermal stability in basic solution.  相似文献   

8.
An organic‐based photocatalysis system for water oxidation, with visible‐light harvesting antennae, was constructed using periodic mesoporous organosilica (PMO). PMO containing acridone groups in the framework (Acd‐PMO), a visible‐light harvesting antenna, was supported with [RuII(bpy)32+] complex (bpy=2,2′‐bipyridyl) coupled with iridium oxide (IrOx) particles in the mesochannels as photosensitizer and catalyst, respectively. Acd‐PMO absorbed visible light and funneled the light energy into the Ru complex in the mesochannels through excitation energy transfer. The excited state of Ru complex is oxidatively quenched by a sacrificial oxidant (Na2S2O8) to form Ru3+ species. The Ru3+ species extracts an electron from IrOx to oxidize water for oxygen production. The reaction quantum yield was 0.34 %, which was improved to 0.68 or 1.2 % by the modifications of PMO. A unique sequence of reactions mimicking natural photosystem II, 1) light‐harvesting, 2) charge separation, and 3) oxygen generation, were realized for the first time by using the light‐harvesting PMO.  相似文献   

9.
A novel kind of macrocyclic‐host‐functionalized periodic mesoporous organosilica (PMO) with excellent and reversible recognition of PbII was developed. The macrocyclic host molecule cis‐dicyclohexano[18]crown‐6, with strong affinity to PbII, was carefully modified as a bridged precursor to build the PMO material. To break down the limit of the functionalization degree for PMOs incorporated with large‐sized moieties, a site‐selective post‐functionalization method was proposed to further decorate the external surface of the PMO material. The selective recognition ability of the upgraded PMO material towards PbII was remarkably enhanced without destroying the mesoporous ordering. Solid‐state 13C and 29Si NMR spectroscopy, X‐ray photoelectron spectroscopy (XPS), XRD, TEM, and nitrogen adsorption–desorption isotherm measurements were utilized for a full characterization of the structure, micromorphology, and surface properties. Reversible binding of PbII was realized in the binding–elution cycle experiments. The mechanism of the supramolecular interaction between the macrocyclic host and metal ion was discussed. The synthetic strategy can be considered a general way to optimize the properties of PMOs as binding materials for practical use while preserving the mesostructure.  相似文献   

10.
Benzene, diethylbenzene, and ethylenediamine-bridged bistrialkoxy precursors were used in the synthesis of multifunctional PMO copolymers for the adsorption of phenols and metal ions. Polyoxyethylene(10) stearyl ether (Brij 76) was used as the structure director with the surfactant template approach in the synthesis. The resulting PMO copolymers with two or more bridging groups have been characterized by nitrogen gas adsorption, powder X-ray diffraction, and 13C and 29Si solid-state NMR. These organosilicas exhibit large surface areas, narrow pore size distributions, large total pore volumes, and pore ordering consistent with well ordered, hexagonally packed p6mm structures. Minimal competitive effects were observed on the adsorption of p-chlorophenol to the copolymers in the presence of copper ions in solution. Similarly, the presence of p-chlorophenol in solution or adsorbed onto the copolymers did not interfere with copper adsorption. Replacement of a small portion of the benzene bridge in the 90:10 BENZ:EDA copolymer with diethylbenzene produced a copolymer 2.5-fold more efficient for p-chlorophenol adsorption. ICP analysis revealed that greater than 98% of adsorbed copper was removed during extraction with HCl, and this extraction process can be repeated with no difference in copper adsorption after regeneration.  相似文献   

11.
Variable temperature 2H-NMR T1 experiments were performed on backbone deuterated atactic polystyrene in four solvents at two Larmor frequencies. Temperature-frequency superposition, which is consistent with experimental results for many other polymers, cannot describe our data. This indicates that the shape of the correlation function for C-D vector reorientation is temperature dependent. A modified log χ2 distribution, of relaxation times, i.e., a delta function plus a log χ2 distribution, was used to fit the experimental data. These fits are consistent with literature 13C T1 and NOE data. As polystyrene local dynamics slow down by a factor of 5, the FWHM of the log χ2 distribution increases from 0.8 to 1.1 decades. Solvent identity does not play a major role in determining the shape of the correlation function. The fraction of the correlation function decay caused by librational motion was determined to be 0.28. The quantity was compared for series of polymers and found to correlate with the size of the side group. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1241–1250, 1997  相似文献   

12.
The full127I NQR spectra of a series of iodo-substituted phenols and phenylmercury phenoxides have been studied. The quadrupole coupling constants and asymmetry parameters have been determined. The character of the OH...Hal hydrogen bond has been found to depend on the nature of substituents in the ring. Correlation dependences of the asymmetry parameters on the sum of the substituents resonance constants have been found for both coordinated as well as for non-coordinated iodine atoms.  相似文献   

13.
The isomolar series method was adapted for an analysis of the formation of a complex between sphingomyelin and phenolic antioxidants (isobornylphenols of different structure and ionol), as well as the stoichiometry of this process. The molar ratios at which sphingomyelin interacts with the phenols investigated have been shown to depend on the structure of the phenols. An analysis of changes in the IR-spectra of mixtures relative to the spectra of individual components showed that the formation of a complex involves the hydroxyl group of the phenolic antioxidants, and the hydroxyl, amide ester and choline groups of sphingomyelin.  相似文献   

14.
取代苯酚中共振增强的分子内氢键   总被引:2,自引:0,他引:2  
根据晶体结构资料,计算了59个邻位取代苯酚中分子内氢键的几何.在STO-3G水平上计算了一些分子中原子部分电荷.结果表明,酚基氧与苯环上碳之间的键长,酚基上氢原子的部分电荷,酚基所在位置处的苯环环内角与取代苯酚的酸常数pKa均有近似线性关系,当邻位上存在硝基或羰基时,内氢键由于共振而得到显著的增强,据此可说明这一类酚的显著酸性  相似文献   

15.
Chiral periodic mesoporous organosilica (PMO) materials have been shown to deracemise a configurationally achiral, but conformationally racemic liquid crystal in which the PMO is embedded. In particular, application of an electric field E in the liquid crystal’s smectic-A phase results in a rotation of the liquid-crystal director by an angle proportional to E, which is detected optically – this is the so-called ‘electroclinic’ effect. Here we present results from electroclinic measurements as a function of frequency and temperature, which allow us to distinguish the component of optical signal that arises from liquid-crystal chirality induced within the PMO’s chiral pores from that induced just outside the silica colloids. Our central result is that the overwhelming source of our electrooptic signal emanates from outside the PMO, and that the contribution from the liquid crystal embedded in the chiral pores is much smaller and below the noise level.  相似文献   

16.
The electron donor–acceptor (EDA) interactions between o-chloranil and a series of phenols have been studied in dioxan medium. Except for resorcinol, the EDA complexes are formed instantaneously on mixing the donor and the acceptor solutions and then they decay slowly into secondary products. In case of resorcinol, formation and decay of the EDA complex are slow and simultaneous. The kinetics of all these reactions have been studied spectrophotometrically and the formation constants of EDA complexes have been determined from kinetic data. The CT values change systematically as the number and position of the –OH groups change in the aromatic ring of the phenol moiety. From the trends in the CT values, the Hückel parameters (hÖ and kC–Ö) for the –OH group, required for a PMO calculation on phenols, have been obtained in a straightforward way and the values so obtained, viz., 1.8 and 1.0 respectively, are close to the ones (1.8 and 0.8) recommended by Streitwieser on the basis of other evidences.  相似文献   

17.
An imidazolyl Schiff base-containing periodic mesoporous organosilica (PMO) was synthesized via co-condensation reactions between a newly prepared bis (imidazolyl)imine-bridged bis silane and tetraethyl orthosilicate in the presence of cetyltrimethyl ammonium bromide as a soft template. The resultant as-synthesized PMO was then employed as a solid support for platinum catalysts. This complex was fully characterized via various techniques including FTIR, solid-state13C NMR, and 29Si-NMR spectroscopy, as well as N2 adsorption/desorption analysis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) methods. In addition, the catalyst was proven to efficiently mediate hydrosilylation reactions between olefins and hydrosilanes, and it can be reused for at least five cycles without significant loss of activity.  相似文献   

18.
Heterogenization of metal‐complex catalysts for water oxidation without loss of their catalytic activity is important for the development of devices simulating photosynthesis. In this study, efficient heterogeneous iridium complexes for water oxidation were prepared using bipyridine‐bridged periodic mesoporous organosilica (BPy‐PMO) as a solid chelating ligand. The BPy‐PMO‐based iridium catalysts (Ir‐BPy‐PMO) were prepared by postsynthetic metalation of BPy‐PMO and characterized through physicochemical analyses. The Ir‐BPy‐PMOs showed high catalytic activity for water oxidation. The turnover frequency (TOF) values for Ir‐BPy‐PMOs were one order of magnitude higher than those of conventional heterogeneous iridium catalysts. The reusability and stability of Ir‐BPy‐PMO were also examined, and detailed characterization was conducted using powder X‐ray diffraction, nitrogen adsorption, 13C DD MAS NMR spectroscopy, TEM, and XAFS methods.  相似文献   

19.
The capacity of a periodic mesoporous organosilica (PMO) to adsorb the aromatic compounds benzene, toluene, o-, and p-xylenes (BTX), which are usually present in produced waters, was investigated under both column and batch processes. The PMO was synthesized by condensation of 1,4 bis(triethoxisilyl)benzene (BTEB) under acidic conditions by using structure-directing agent (SDA) Pluronic P123 in the presence of KCl. Thermogravimetric analysis showed that the presence of the surfactant decreases the thermal stability of the PMO. The small-angle X-ray diffraction pattern, as well as the nitrogen adsorption/desorption isotherm measurements, revealed that the synthesized material has a crystalline structure, with hexagonally-ordered cylindrical mesopores. The adsorption kinetics study indicated an adsorption equilibrium time of 50 min and also showed that the data best fitted the pseudo-first order kinetic model. The intraparticle diffusion model was also tested and pointed to the occurrence of such process in all cases. Both Langmuir and Temkin models best represented the adsorption isotherms of toluene; Langmuir and Redlich-Peterson models best represented the data obtained for the other compounds. Adsorption capacity decreases in the order benzene>o-xylene>p-xylene>toluene. Satisfactory results were observed in the application of the synthesized PMO for the removal of BTX from aqueous solution.  相似文献   

20.
Some well known thiocyanates have been studied by non-empirical and MNDO methods. The reliability of the adopted basis set and the unimportance of d orbitals on sulfur in describing thiocyanates have been tested on the HSCN molecule.The geometrical parameters computed at the STO—3G level are in good agreement with experimental data and indicate that thiocyanates are w shaped molecules with a high bending constant around the sulfur atom and quite important coupling between CSC and SCN angles.The MNDO method gives similar results, except for CS bond lengths, which are systematically underestimated.The correlation between geometry and electronic structure of thiocyanates is discussed, with special reference to cyanates, on the basis of PMO theory, Walsh diagrams and Mulliken population analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号