首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Formulas are derived for the density matrices belonging to an n-particle wave function built on the basis of single-center explicitly correlated Gaussian basis functions. An explicit formula for the first-order density matrix, P(r1, r1), is obtained for computing the probability distribution P(r1, r1). Other formulas are derived for matrix elements of the first-order density operator P on a basis of single-particle Gaussian orbitals so that natural orbitals (NOs) can be expressed in such a basis. The method is illustrated for the case of the ground state of the helium atom using the 16-term (geminal) wave function by Singer and Longstaff (E = −2.90233 au) and a set of even-tempered Gaussian orbitals. The resulting natural orbitals compare favorably with natural orbitals from Cl expansions. The method is also applied to our 20 term (trimal) wave function for the ground state of dipositronium (E = −0.51560 au). Analysis is made in this case for pair correlation functions of both the electron-electron and the positron-electron pairs; results include the radial distributions of these pairs and their relative angular momentum. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
Various optimization criteria are compared for the hydrogen atom to find orbitals which improve lower bounds computed from the Weinstein, Temple, and Stevenson-Crawford formulas. Minimization of squared energy deviation, “variance,” is recommended because the resulting lower bound orbitals give excellent lower bounds, converge to the exact wave function, are relatively easy to optimize, and are insensitive to the estimated energy eigenvalue. New linear combinations of Gaussian orbitals which minimize the variance are presented for the 1s, 2s, 2p, 3s, 3p, and 3d orbitals. These orbitals are compared with previous linear combinations with regard to their expectation values and local properties.  相似文献   

3.
4.
Using optimal exponents for B through Ne given by Dunning and those for Al through Ar by Woon and Dunning, d-type contracted polarization functions (2d/1d), (3d/1d), and (3d/2d) are generated from natural orbitals of atomic single and double excitation configuration interaction (SDCI) calculations, where the numbers before and after the slash are those of the primitive and contracted Gaussian type functions. The resulting contracted functions are tested on N2 and P2 molecules by self-consistent field and SDCI calculations, which clarify characteristics of the present polarization functions. Received: 5 June 1997 / Accepted: 20 August 1997  相似文献   

5.
A new method based on linear response theory is proposed for the determination of the Kohn-Sham potential corresponding to a given electron density. The method is very precise and affords a comparison between Kohn-Sham potentials calculated from correlated reference densities expressed in Slater-(STO) and Gaussian-type orbitals (GTO). In the latter case the KS potential exhibits large oscillations that are not present in the exact potential. These oscillations are related to similar oscillations in the local error function δ i (r)=(−ɛ i i (r) when SCF orbitals (either Kohn-Sham or Hartree-Fock) are expressed in terms of Gaussian basis functions. Even when using very large Gaussian basis sets, the oscillations are such that extreme care has to be exercised in order to distinguish genuine characteristics of the KS potential, such as intershell peaks in atoms, from the spurious oscillations. For a density expressed in GTOs, the Laplacian of the density will exhibit similar spurious oscillations. A previously proposed iterative local updating method for generating the Kohn-Sham potential is evaluated by comparison with the present accurate scheme. For a density expressed in GTOs, it is found to yield a smooth “average” potential after a limited number of cycles. The oscillations that are peculiar to the GTO density are constructed in a slow process requiring very many cycles. Received: 24 February 1997 / Accepted: 18 June 1997  相似文献   

6.
7.
A linear scaling of the number of nonzero integrals in extended systems calculations and the solution of the difficult cutoff threshold problems in the integral evaluation of periodic HF computations could be solved by the usage of orbitals with a finite extension. The present work proposes the usage of Box orbitals, defined inside spheres centered on the nuclei. Preliminary tests on small systems (atoms and H2+) were performed. The results are very encouraging, since, in most cases, the Box orbitals give better results (giving results of equivalent quality in the worse cases) than do the classical Gaussian orbitals. No spurious effects were encountered. © 1997 John Wiley & Sons, Inc. Int J Quant Chem 64 : 411–420, 1997  相似文献   

8.
A discrete variable representation (DVR) made from distributed Gaussians gn(x) = e, (n = ?∞, …, ∞) and its infinite grid limit is described. The infinite grid limit of the distributed Gaussian DVR (DGDVR) reduces to the sinc function DVR of Colbert and Miller in the limit c → 0. The numerical performance of both finite and infinite grid DGDVRs and the sinc function DVR is compared. If a small number of quadrature points are taken, the finite grid DGDVR performs much better than both infinite grid DGDVR and sinc function DVR. The infinite grid DVRs lose accuracy due to the truncation error. In contrast, the sinc function DVR is found to be superior to both finite and infinite grid DGDVRs if enough grid points are taken to eliminate the truncation error. In particular, the accuracy of DGDVRs does not get better than some limit when the distance between Gaussians d goes to zero with fixed c, whereas the accuracy of the sinc function DVR improves very quickly as d becomes smaller, and the results are exact in the limit d → 0. An analysis of the performance of distributed basis functions to represent a given function is presented in a recent publication. With this analysis, we explain why the sinc function DVR performs better than the infinite grid DGDVR. The analysis also traces the inability of Gaussians to yield exact results in the limit d → 0 to the incompleteness of this basis in this limit. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

9.
10.
Even systems in which strong electron correlation effects are present, such as the large near-degeneracy correlation in a dissociating electron pair bond exemplified by stretched H2, are represented in the Kohn–Sham (KS) model of non-interacting electrons by a determinantal wavefunction built from the KS molecular orbitals. As a contribution to the discussion on the status and meaning of the KS orbitals we investigate, for the prototype system of H2 at large bond distance, and also for a one-dimensional molecular model, how the electron correlation effects show up in the shape of the KS σ g orbital. KS orbitals φHL and φFCI obtained from the correlated Heitler-London and full configuration interaction wavefunctions are compared to the orbital φLCAO, the traditional linear combination of atomic orbitals (LCAO) form of the (approximate) Hartree-Fock orbital. Electron correlation manifests itself in an essentially non-LCAO structure of the KS orbitals φHL and φFCI around the bond midpoint, which shows up particularly clearly in the Laplacian of the KS orbital. There are corresponding features in the kinetic energy density t s of the KS system (a well around the bond midpoint) and in the one-electron KS potential v s (a peak). The KS features are lacking in the Hartree-Fock orbital, in a minimal LCAO approximation as well as in the exact one. Received: 11 December 1996 / Accepted: 10 January 1997  相似文献   

11.
12.
The binding energy spectra for the valence orbitals of hydrogen chloride have been obtained using the binary (e,2e) method at 1200 eV. The strength of the innermost valence orbital (4σ) is severely split among several ion states in the energy range 25 to 41 eV. The measured cross sections are compared with results of calculations using contracted Gaussian basis sets of double-zeta quality, and with a one-particle Green's function calculation.  相似文献   

13.
The axial Gaussian lobe orbital (AGLO ) representations of 3d and 4f orbitals proposed by LeRouzo and Silvi have been angularly optimized to ensure spherical symmetry of filled 3d and 4f shells. The functions have been tested on the hydrogen atom in the presence of high quality s and p basis sets and found to provide excellent minimal Gaussian representations of polarization functions. Exact orbital degeneracy is not obtained within each shell, however. Tabulated values are given to allow arbitrary scaling of the 3d and 4f lobe mimic orbitals.  相似文献   

14.
HeH++ was selected as a simple model for the comparison of relative efficiencies of single and multi-centered Gaussian functions in computing molecular orbitals and their corresponding energies. One-, two-, and three-center linear combinations of twelve basis functions were applied to the calculation of potential curves for the ground state and lowest two excited sigma states of HeH++. A point-by-point comparison was made with the same states generated by an exact solution calculation. This comparison demonstrated that the multi-centered functions were capable of reproducing energy minima, potential curve crossings and dissociation modes in agreement with the exact calculation. The single center functions were not capable of duplicating this behavior.  相似文献   

15.
The flexibility of the five-membered ring in tetrahydrofuran was investigated using quantum mechanical methods involving density functional, Hartree-Fock, and many-body perturbation theory (MP2, MP4) calculations. We found that motion along the pseudorotational path of tetrahydrofuran is nearly free. The 0.1 kcal/mol energy barrier for pseudorotation, calculated at the highest MP4(SDQ)/6-311++G(2d,p)//MP2/6-311++G(2d,p) level of theory, agrees well with the experimental value of 0.16±0.03 kcal/mol. Similar results were obtained with the S-VWN, B3-LYP and B-LYP density functional calculations using the 6-31G(d) set of atomic orbitals. Also the density functional dipole moments and geometries were in good agreement with both the MP2 and experimental benchmarks. However, all density functional methods that utilized the default integration grid in the Gaussian 94 program were found to provide false stationary points of the C 1 symmetry near the pseudorotational angle of 100°. These stationary points disappeared when a denser spherical-product grid was used. Overall, the hybrid B3-LYP functional was found to be the most promising quantum mechanical method for the modeling of biomolecules containing the furanose ring. Received: 17 June 1997 / Accepted: 20 November 1997  相似文献   

16.
Analytical expressions for the square of the spherical average of Fourier transforms of Gaussian type orbitals (GTO 's) are given. A direct application of these expressions to the calculation of molecular photoionization cross sections is considered under the generalized sudden (GSA ) and dipole (DA ) Approximations. Numerical calculations were done on the CO molecule using bound orbitals obtained by ab initio LCAO –MO calculations with Gaussian basis sets. The results are in good agreement with experiments. Those obtained by the GSA method however, suggest a limitation in its use: the GSA method is only applicable when comparing photoionization intensities of neighboring ionization energy orbitals. Applications to other molecules are immediate.  相似文献   

17.
Analytical gradients for Singer's basis of n‐electron multicenter explicitly correlated Gaussian functions are derived and implemented to variationally optimize the energy and wave function of molecular systems within the Born–Oppenheimer approximation. Wave functions are optimized with respect to (½n(n+1)+3n) nonlinear variational parameters and one linear coefficient per term in the basis set. Preliminary results for the ground states of H3+ and H3 suggest that the method can be more flexible and can achieve lower energies than previously reported calculations. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 82: 151–159, 2001  相似文献   

18.
Multi-ζ Slater-type orbitals are frequently used in molecular orbital calculations. Master formulae and numerical tables are available in literature for overlap integrals between s, p, and d atomic orbitals up to principal quantum number (n) = 3 and for some other selected quantum numbers. However, no master formula or numerical table is available for quantum numbers n = 5 and above and involving ? orbitals. In this article recursion formulae have been presented for the calculation of the overlap integral between any two s, p, d, and ? atomic orbitals formed by a linear combination of Slater-type orbitals. These formulae, when expanded, would give rise to all the master formulae reported in the literature as well as formulae hitherto unreported.  相似文献   

19.
This paper presents an efficient algorithm for energy gradients in valence bond self-consistent field (VBSCF) method with non-orthogonal orbitals. The frozen core approximation method is extended to the case of non-orthogonal orbitals. The expressions for the total energy and its gradients are presented by introducing auxiliary orbitals, where inactive orbitals are orthogonal, while active orbitals are non-orthogonal themselves but orthogonal to inactive orbitals. It is shown that our new algorithm has a low scaling of (N a + 1)m 4, where N a and m are the numbers of the active orbitals and basis functions, respectively, and is more efficient than the existing VBSCF algorithms.  相似文献   

20.
Four minimal Gaussian basis sets are generated for the second-row atoms Li through Ne. The first one, MINI-1, consists of a 3-term contraction of primitive Gaussian-type orbitals for 1s, 2s, and 2p atomic orbitals. The convenient shorthand notation would be (3,3) for Li? Be and (3,3/3) for B? Ne. The second one, MINI-2, can be represented by (3,3/4) for B? Ne. In the same way, MINI-3 is described as (4,3) for Li? Be, and MINI-3 and MINI-4 are represented by (4,3/3) and (4,3/4) for B? Ne, respectively. Although the four basis sets are the minimal type, they give the valence shell orbital energies which are close to those of DZ. These four and other sets derived from them are tested for the hetero- and homodiatomic molecules and some organic molecules. They are found to give the orbital energies that agree well with those given by extended calculations. Atomization energies and other spectroscopic constants are also calculated and compared with those of extended calculations. The results clearly indicate that the present basis sets can be used very effectively in the molecular calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号