首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Junyu Zong 《中国物理 B》2022,31(10):107301-107301
As a special order of electronic correlation induced by spatial modulation, the charge density wave (CDW) phenomena in condensed matters attract enormous research interests. Here, using scanning—tunneling microscopy in various temperatures, we discover a hidden incommensurate stripe-like CDW order besides the ($sqrt{7}$ × $sqrt{3}$) CDW phase at low-temperature of 4 K in the epitaxial monolayer 1T-VSe2} film. Combining the variable-temperature angle-resolved photoemission spectroscopic (ARPES) measurements, we discover a two-step transition of an anisotropic CDW gap structure that consists of two parts Δ1 and Δ2. The gap part Δ1 that closes around ~ 150 K is accompanied with the vanish of the ($sqrt{7}$ × $sqrt{3}$) CDW phase. While another momentum-dependent gap part Δ2 can survive up to ~ 340 K, and is suggested to the result of the incommensurate CDW phase. This two-step transition with anisotropic gap opening and the resulted evolution in ARPES spectra are corroborated by our theoretical calculation based on a phenomenological form for the self-energy containing a two-gap structure Δ1 + Δ2, which suggests different forming mechanisms between the ($sqrt{7}$ × $sqrt{3}$) and the incommensurate CDW phases. Our findings provide significant information and deep understandings on the CDW phases in monolayer 1T-VSe2} film as a two-dimensional (2D) material.  相似文献   

2.
Electron tunneling spectroscopy of the organic superconductor κ-(BEDT-TTF)2Cu(NCS)2using low temperature scanning tunneling microscope (STM) is reported. The tunneling differential conductance in the superconducting phase was obtained in thebcplane of a single crystal, by varying the tip position on the sample surface. The differential conductance is reduced near zero bias voltage and enhanced at the gap edge, associated with the superconducting gap structure below[formula] K. The gap width differs slightly from sample to sample, while the overall functional shape of the conductance is sample-independent. The tunneling conductance is reduced to almost zero near zero bias voltage, while it is finite inside the gap edge. The curve obtained cannot be fit to the BCS density of states withs-wave pairing symmetry, even if the life-time broadening of one-electron levels is taken into account. Finite conductance inside the gap edge suggests anisotropy of the gap. However, the conductance curve obtained is not explained by a simpled-wave symmetry for Δ(k). The reduced conductance near zero bias voltage suggests a finite gap. An anisotropic model with a finite gap, in which Δ(k) varies depending on the direction ink-space, is examined. The tunneling conductance in the low-energy region is almost fit by the model with Δmin = 2 meV and Δmax = 6 meV. The finite conductance is explained by introducing a small effect of life time broadening. We conclude that the gap is anisotropic and is finite (at least Δmin = 2 meV) on the entire Fermi surface.  相似文献   

3.
The superconducting state of LiFeAs single crystals with the maximum critical temperature T c ≈ 17 K in the 111 family has been studied in detail by multiple Andreev reflections (MAR) spectroscopy implemented by the break-junction technique. The three superconducting gaps, ΔΓ = 5.1–6.5 meV, ΔL = 3.8–4.8 meV, and ΔS = 0.9–1.9 meV (at T ? T c), as well as their temperature dependences, have been directly determined in a tunneling experiment with these samples. The anisotropy degrees of the order parameters in the k space have been estimated as <8, ~12, and ~20%, respectively. Andreev spectra have been fitted within the extended Kümmel-Gunsenheimer-Nikolsky model with allowance for anisotropy. The relative electron-boson coupling constants in LiFeAs have been determined by approximating the Δ(T) dependences by the system of the two-band Moskalenko and Suhl equations. It has been shown that the densities of states in bands forming ΔΓ and ΔL are approximately the same, intraband pairing dominates in this case, and the interband coupling constants are related as λΓL ≈ λ ? λ, λSL.  相似文献   

4.
EPR spectra at 35 and 60 GHz of Gd3+ diluted (~1%) in powdered SnMo6S8 and PbMo6S8 are presented and interpreted. The crystal field is found to be axial, with D = b20=-760 gauss and -740 Gauss for the tin and lead compounds respectively. Values are obtained for <J(q)> and J(q = 0). Below Tc the impurity to conduction electron relaxation rate is no longer proportional to temperature but decreases more rapidly. From this temperature dependence we extract a value for kTc of roughly 5 for both compounds.  相似文献   

5.
An EPR study of ytterbium dodecaboride (YbB12) showed the presence of an energy gap with a width of 2Δ=12 meV in the energy spectrum of this Kondo insulator. The temperature dependence of the energy gap was determined by interpreting the experimental data within the framework of the exciton dielectric model: Δ(T)=72 K at an absolute zero and Δ(T)=0 at ~115 K. The temperature dependence of the EPR line-width exhibits a feature at 13–15 K, which is indicative of a finite density of states inside the gap. This can be related to the presence of impurity states or bound polaron excitations in the electron spectrum of YbB12.  相似文献   

6.
The YbB12 Kondo insulator was studied by EPR. The energy spectrum of YbB12 was established to have a gap of width 2Δ≈12 meV. The experimental data are interpreted in terms of the excitonic-dielectric model. The temperature behavior of the gap was determined; it was found that Δ(T)=72 K at absolute zero and vanishes at ~115 K.  相似文献   

7.
We present scanning tunneling microscopy and spectroscopy of the newly discovered superconductor CaC6. The tunneling conductance spectra, measured between 3 and 15 K, show a clear superconducting gap in the quasiparticle density of states. The gap function extracted from the spectra is in good agreement with the conventional BCS theory with Delta0=1.6+/-0.2 meV. The possibility of gap anisotropy and two-gap superconductivity is also discussed. In a magnetic field, direct imaging of the vortices allows us to deduce a coherence length in the ab plane xiab approximately 33 nm.  相似文献   

8.
Low-temperature specific heat and thermal expansion measurements are used to study the hydrogen-based ferroelectric lawsonite over the temperature range 1.8 K ≤ T ≤ 300 K. The second-order phase transition near 125 K is detected in the experiments, and the low-temperature phase is determined to be improper ferroelectric and co-elastic. In the ferroelectric phase T ≤ 125 K, the spontaneous polarization P(s) is proportional to (1) the volume strain e(s), and (2) the excess entropy ΔS(e). These proportionalities confirm the improper character of the ferroelectric phase transition. We develop a structural model that allows the off-centering of hydrogen positions to generate the spontaneous polarization. In the low-temperature limit we detect a Schottky anomaly (two-level system) with an energy gap of Δ ~ 0.5 meV.  相似文献   

9.
We have studied current-voltage characteristics of Andreev contacts in polycrystalline GdO0.88F0.12FeAs samples with bulk critical temperature T c = (52.5 ± 1) K using break-junction technique. The data obtained can- not be described within the single-gap approach and suggests the existence of a multi-gap superconductivity in this compound. The large and small superconducting gap values estimated at T = 4.2 K are Δ L = 10.5 ± 2 meV and Δ s = 2.3 ± 0.4 meV, respectively.  相似文献   

10.
Using scanning tunneling spectroscopy, we investigated the temperature dependence of the quasiparticle density of states of overdoped Bi(2)Sr(2)CuO(6+delta) between 275 mK and 82 K. Below T(c) = 10 K, the spectra show a gap with well-defined coherence peaks at +/-Delta(p) approximately 12 meV, which disappear at T(c). Above T(c), the spectra display a clear pseudogap of the same magnitude, gradually filling up and vanishing at T(*) approximately 68 K. The comparison with Bi(2)Sr(2)CaCu(2)O(8+delta) demonstrates that the pseudogap and the superconducting gap scale with each other, providing strong evidence that they have a common origin.  相似文献   

11.
We have performed thermodynamic and neutron scattering measurements on the S=1/2 kagomé lattice antiferromagnet ZnCu3(OH)6Cl2. The susceptibility indicates a Curie-Weiss temperature of theta CW approximately = -300 K; however, no magnetic order is observed down to 50 mK. Inelastic neutron scattering reveals a spectrum of low energy spin excitations with no observable gap down to 0.1 meV. The specific heat at low-T follows a power law temperature dependence. These results suggest that an unusual spin liquid state with essentially gapless excitations is realized in this kagomé lattice system.  相似文献   

12.
Corrections of the α5 and α6 orders to the energy spectrum of the hyperfine splitting of the 1S and 2S levels of the muonic helium ion are calculated with the inclusion of the electron vacuum polarization effects, nuclear-structure corrections, and recoil effects. The values ΔE hfs(1S) = ?1334.56 meV and ΔE hfs(2S) = ?166.62 meV obtained for hyperfine splitting values can be considered as reliable estimates for comparison with experimental data. The hyperfine structure interval Δ12 = 8ΔE hfs(2S) ? ΔE hfs(1S) = 1.64 meV can be used to verify QED predictions.  相似文献   

13.
We present a detailed study of vortex-core spectroscopy in slightly overdoped Bi2Sr2CaCu2O8+delta using a low-temperature scanning tunneling microscope. Inside the vortex core, we observe a fourfold symmetric modulation of the local density of states with an energy-independent period of (4.3 +/- 0.3)a0. Furthermore, we demonstrate that this square modulation is related to the vortex-core states which are located at +/-6 meV. Since the core-state energy is proportional to the superconducting gap magnitude , our results strongly suggest the existence of a direct relation between the superconducting state and the local electronic modulations in the vortex core.  相似文献   

14.
王明安  刘军 《波谱学杂志》1998,15(2):169-172
1H NMR方法研究了不同溶剂和温度对6,8-二甲基-1,2,4-三唑并嘧啶-3-丁二酮基硫醚酮-烯醇互变异构平衡的影响,发现温度升高有利于平衡向酮式转变,而溶剂极性的改变对平衡的影响并不规律,获得了四种溶剂中的ΔH和ΔS.  相似文献   

15.
Tunneling measurements have been carried out on layered superconductors of the β(SmSI)-type – Li0.48(THF)xHfNCl (THF?=?C4H8O) and HfNCl0.7 – by means of break-junction and scanning tunneling spectroscopy. Break-junction technique reveals Bardeen-Cooper-Schrieffer (BCS) – like gap structures with typical gap values of 2Δ (4.2 K) = 11–12 meV for Li0.48(THF)xHfNCl with the highest Tc = 25.5 K. Some of our measurements revealed multiple gaps and dip-hump structures, the largest gap 2Δ (4.2 K) ≈ 17–20 meV closing at Tc. This was shown both by break-junction and scanning-tunneling spectroscopy. From these experiments it stems that the highest obtained gap ratio 2Δ/kBTc ~ 8 substantially exceeds the BCS weak-coupling limiting values: ≈3.5 and ≈4.3 for s-wave and d-wave order parameter symmetry, respectively. Such large 2Δ/kBTc ratios are rather unusual for conventional superconductors but quite common to high-Tc cuprates, as well as to organic superconductors. Our studies allowed to collect much more evidence concerning the huge pairing energy in those materials and to investigate in detail the complexity of their superconducting gap spectra. An origin of the observed phenomena still remains to be clarified.  相似文献   

16.
Current-voltage characteristics of S-I-S tunnel break junctions fabricated from pure undoped Bi2223 single crystals (T c =110 K) were measured. High quality of the crystals enabled production of good tunnel junctions with a low or almost zero leakage current and well developed gap structure in the tunneling spectra. The peak-to-peak energy gap values 2Δp-p in different crystals and the tunnel junctions ranged from 80 to 105 meV. The tunneling conductance in the superconducting state was normalized to that in the normal state and compared to a smeared BCS density of states. A simple fit of the data gave the average value of Δ=38.5 meV and reduced gap 2Δ/kT c ?8, consistent with a very strong coupling mechanism.  相似文献   

17.
We have analyzed about a hundred voltage-dependent differential resistance dV/dI(V) curves of metallic point contacts between c-axis-oriented MgB2 thin film and Ag, which exhibit clear Andreev reflection features connected with the superconducting gap. About one half of the curves show the presence of a second larger gap. The histogram of the double gap distribution reveals distinct maxima at 2.4 and 7 meV, while curves with single-gap features result in a more broad maximum at 3.5 meV. The double-gap distribution is in qualitative agreement with the distribution of gap values over the Fermi surface calculated by H. J. Choi et al. (cond-mat/0111183). The data unequivocally show the presence of two gaps: ΔS=2.45±0.15 meV and ΔL=7.0±0.45 meV in MgB2 with the gap ratio ΔLS=2.85±0.15. Our observations further prove a widely discussed multigap scenario for MgB2, where two distinct gaps are seen in the clean limit, while a single averaged gap is present in the dirty one.  相似文献   

18.
YBa2Cu3O6+δ的高频模及其随氧含量δ的变化   总被引:2,自引:0,他引:2       下载免费PDF全文
在中国原子能科学研究院新建的宽角(~30°)Be过滤探测器中子非弹性散射谱仪上,在入射中子能量从10直至150meV的范围内,测量了几种不同氧含量的YBa2Cu3O6+δ样品的中子非弹性散射能谱。结果表明:(1)在δ=0和0.2时,在60至150meV能量范围内,发现有强的高频模存在,当其温度高到Nel点(~410K)以上直至466K时,没有观察出高频模强度的减弱。而δ=0.78和0.97时,在75至150meV能量范围内,散射强度在测量误 关键词:  相似文献   

19.
Intrinsic paramagnetic defects in ~5 nm sized nanodiamonds, produced by various dynamic synthesis (DySND) techniques (detonation, shock-wave, pulsed laser ablation of solid carbon containing targets), have been studied by multi-frequency electron paramagnetic resonance (EPR). X-band (9-10 GHz) EPR spectra of DySND, in addition to the main intensive singlet Lorentzian-like EPR signal, reveal a low intensity doublet pattern within the half-field (HF) region (g ~ 4). On transferring spectra to the Q-band (34 GHz) the shape of the HF pattern changes and splitting between doublet components is reduced from 10.4 to 2.6 mT. The HF patterns observed are attributed to the 'forbidden' ΔM(S) = 2 transitions between the Zeeman levels of some spin-triplet (S = 1) centers. The model of two triplet centers with g ~ 2.003 and zero-field splitting parameters D(1) = 0.095 cm(-1) (TR1) and D(2) = 0.030 cm(-1) (TR2) satisfactorily describes experimental results at both microwave frequencies. The spin-triplet-type defects are observed in a wide variety of DySND samples irrespective of industrial supplier, cooling and carbon soot refinement methods, initial purity, disintegration, or subsequent targeted chemical modification. This indicates that the intrinsic defects with S = 1 in DySND systems are of universal origin.  相似文献   

20.
The hyperfine structure of the energy spectrum of the S levels of muonic tritium has been calculated using the quasi-potential method in quantum electrodynamics (QED). The α5- and α6-order effects on the polarization of vacuum, the structure and recoil of the nucleus, and relativistic corrections have been taken into account. The obtained numerical values of hyperfine splittings of 239.819 meV (1S state) and 29.965 meV (2S state) can be treated as reliable estimates for comparing with future experimental data of the CREMA collaboration, and hyperfine structure interval Δ12 = 8ΔE hfs (2S)–ΔE hfs (1S) =–0.100 meV can be used for verifying the QED predictions. The resultant precision values of hyperfine splitting are also important for calculating the rates of formation of (μ dt) mesomolecules in muonic catalysis reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号