首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures and thermal properties of Ag–Pt–Ni ternary nanoclusters varying with different compositions and sizes are studied by Monte Carlo and molecular dynamics simulations. It can be found that silver atoms tend to occupy the surface and platinum atoms favor the subsurface occupation, whereas the inner is occupied by nickel atoms due to the different surface energies and lattice parameters. In addition, there is a non-monotonous relationship between the melting points and compositions of Ag–Pt–Ni ternary nanoclusters according to molecular dynamics simulations. In addition, a linear decrease in melting point with \(N^{ - 1/3}\) is found for both monometallic and trimetallic clusters. This behavior is consistent with Pawlow’s law.  相似文献   

2.
《中国化学快报》2023,34(3):107524
The development of efficient and cost-effective electrocatalysts for oxygen evolution reaction (OER) is crucial for the overall water splitting. Herein, we prepared a highly exposed NiFeOx ultra-small nanoclusters supported on boron-doped carbon nonotubes catalyst, which achieves a 10 mA/cm2 anodic current density at a low overpotential of 213 mV and the Tafel slope of 52 mV/dec in 1.0 mol/L KOH, superior to the pristine NiFeOx-CNTs and other state-of-the-art OER catalysts in alkaline media. A combination study (XPS, sXAS and XAFS) verifies that the local atomic structure of Ni and Fe atoms in the nanoclusters are similar to NiO and Fe2O3, respectively, and the B atoms which are doped into the crystal lattice of CNTs leads to the optimization of Ni 3d eg orbitals. Furthermore, in-situ X-ray absorption spectroscopies reveal that the high valence state of Ni atoms are served as the real active sites. This work highlights that the precise control of highly exposed multicomponent nanocluster catalysts paves a new way for designing highly efficient catalysts at the atomic scale.  相似文献   

3.
李艳秋  刘淑萍  郝策  王泽新  邱介山 《化学学报》2009,67(23):2678-2684
应用原子与表面簇合物相互作用的五参数Morse势(5-MP)方法对氢原子在Ni(111)表面和次表面以及Ni(211), (533)台阶面进行了系统研究, 得到了氢原子在上述各面的吸附位、吸附几何、结合能和本征振动频率. 计算结果表明, 在Ni(111)面上, 氢原子优先吸附在三重位, 随着覆盖度的增加会吸附在次表面八面体位和四面体位. Ni(211), (533)的最优先吸附位都是四重位, 当氢原子的覆盖度增大时占据(111)平台的三重吸附位. 靠近台阶面的吸附位受台阶和平台高度的影响很大. 此外, 我们计算了氢原子在各表面的不同吸附位的扩散势垒, 获得氢原子在各表面的最低能量扩散通道.  相似文献   

4.
We have performed MD simulations to investigate H2 adsorption on Ag–Au nanoclusters with the different Au mole fractions supported on the carbon nanotubes with the different diameters. Our thermodynamic results shown that the saturation value of coverage and the enthalpy of adsorption increases as the mole fraction of Au is increased. Our structural results showed that the presence of the H2 gas exerts a significant effect on the nanocluster surface atoms and tends to stabilize the surface atoms on the nanocluster. Also, the structural changes are irreversible in such a way that by gradually decreasing the pressure to zero, the nanocluster geometry is not reversed to its initial structure in vacuum conditions. We have also shown that the nanoclusters have smaller values of the self‐diffusion coefficients in presence of H2 molecules than those values in the initial state (vacuum), which is due to the increasing of the interface structure between the nanocluster and the nanotube.  相似文献   

5.
6.
7.
Carbon adsorption on various Ni surfaces is investigated as a function of coverage via a combination of first‐principles simulations and field emission microscope experiments. It is found that carbon can be efficiently stored as subsurface carbides, but with different energetics on differently oriented surfaces depending on their compactness and density of adsorption sites. In the resulting morphological reshaping, {113} facets are predicted to grow at the expense of {111} and {100} facets, in excellent agreement with experimental observations. Moreover, at high coverage on the {113} surface the carbon adsorption energy passes through a maximum after which a structural crossover is realized such that carbon atoms tend to ascend to the surface to form one‐dimensional chains (which are the precursors of graphitic nanostructures). This rationalizes the experimental observation of an incubation time between carbon storage and the beginning of catalytic growth, and provides insight into the early stages (nucleation mechanism) of carbon nanotubes on Ni nanoparticles.  相似文献   

8.
We used a grand canonical Monte Carlo simulation to study the influence of impurities including water vapor, SO2, and O2 in the flue gas on the adsorption of CO2/N2 mixture in carbon nanotubes (CNTs) and carboxyl doped CNT arrays. In the presence of single impure gas, SO2 yielded the most inhibitions on CO2 adsorption, while the influence of water only occurred at low pressure limit (0.1 bar), where a one-dimensional chain of hydrogen-bonded molecules was formed. Further, O2 was found to hardly affect the adsorption and separation of CO2. With three impurities in flue gas, SO2 still played a major role to suppress the adsorption of CO2 by reducing the adsorption amount significantly. This was mainly because SO2 had a stronger interaction with carbon walls in comparison with CO2. The presence of three impurities in flue gas enhanced the adsorption complexity due to the interactions between different species. Modified by hydrophilic carboxyl groups, a large amount of H2O occupied the adsorption space outside the tube in the carbon nanotube arrays, and SO2 produced competitive adsorption for CO2 in the tube. Both of the two effects inhibited the adsorption of CO2, but improved the selectivity of CO2/N2, and the competition between the two determined the adsorption distribution of CO2 inside and outside the tube. In addition, it was found that (7, 7) CNT always maintained the best CO2/N2 adsorption and separation performance in the presence of impurity gas, for both the cases of single CNT and CNT array.  相似文献   

9.
It is reported that Pd?Pt core-shell type nanoclusters in which the inner atoms of the Pd cluster are substituted by Pt significantly enhance the catalytic activity for cycloocatdiene hydrogenation. In order to discuss the electronic states of core-shell clusters, DFT calculations were carried out for Pd13, Pt13, Pt/Pd12, Pd/Pt12 Pd38 and Pd6/Pt32 clusters. From these calculations, it was found that the charge transfer between the core atoms and the shell atoms played an important role for the modification of the electronic state of the surface atoms in them.  相似文献   

10.
Small clusters, which simulate the active sites of Pt–Sn intermetallics exhibiting a high level of activity and selectivity in the deoxygenation reaction of esters without the loss of carbon mass to form C1, C2, and carbon oxides, are constructed and studied with the density functional theory. Molecular adsorption of hydrogen, dissociation of hydrogen molecules at Pt sites, and transition of adsorbed hydrogen atoms from Pt to Sn are considered. The introduction of Sn significantly decreases the affinity of platinum to hydrogen, so that the transition of H atoms to Sn atoms is facilitated with the increase in the amount of Sn. A comparison of the activation energies for such a transition with those of the possible association of hydrogen atoms on tin and the molecular desorption of H2 showed that the hydrogen spillover in the Pt–Sn intermetallics should not lead to a significant accumulation of hydrogen on tin. In other words, in contrast to Pt atoms, Sn atoms probably cannot serve as active sites of hydrogen adsorption in the deoxygenation reaction.  相似文献   

11.
The structural and thermal properties of small carbon clusters (C N , N = 13, 20, and 32) are investigated by constant energy Molecular Dynamics simulations over a wide range of temperatures, i.e., from T = 0K to above the melting point of graphitic carbon. The Tersoff interatomic potential [6] is used to mimic the covalent bond between the carbon atoms in the cluster. We find that small carbon clusters start to fragment or to evaporate atoms or C2 or C3 units before fully developing a liquidlike phase. As a consequence, some relevant isomers (such as rings, bowls, hollow cages) are thermally isolated from each other i.e., there are no thermally activated isomerization transitions between them. Possible implications of our results on the growth mechanism of fullerenes are discussed.  相似文献   

12.
Adsorption of N2 on Mo6S8q_Vx clusters (x=0, 1, 2; q=0, ±1) were systematically studied by density functional theory calculations with dispersion corrections. It was found that the N2 can be chemisorbed and undergo non-dissociative activation on single or double metal atoms. The adsorption and activation are influenced by metal types (V or Mo), N2 coordination modes and charge states of the clusters. Particularly, anionic Mo6S8_V2 clusters have remarkable ability to fix and activate N2. In Mo6S8_V2, two V atoms prefer to adsorb on two adjacent S−Mo−S hollow sites, leading to the formation of a supported V…V unit. The N2 is bridged side-on coordinated with these two V atoms with high adsorption energy and significant charge transfer. The bond order, bond length and vibration frequency of the adsorbed N2 are close to those of a N−N single bond.  相似文献   

13.
Adsorption and diffusion of carbon monoxide on Pd low‐index surfaces and missing‐row Pd (110) reconstructed surface have been investigated by the extended London–Eyring–Polyani–Sato (LEPS) method constructed by means of a five‐parameter Morse potential. All critical characteristics, such as adsorption site, adsorption geometry, binding energy, CO vibrational frequency have been obtained and compared with the experimental and theoretical data. On these surfaces, the stable adsorption sites of CO are changed with increasing CO coverage. On the missing‐row Pd (110) reconstructed surface, there are five stable adsorption sites: H1, H2 (H1 and H2 are threefold hollow sites on (111) subsurface), B (bridge site on the second layer), SB (short‐bridge site), and T (top site). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Dynamic sorption is used to study the adsorption properties of palladium and nickel nanoparticles immobilized on a surface of ultrafine diamond (UFD). The test adsorbates are n-alkanes (C6-C8), benzene, chloroform, diethyl ether, chlorobenzene, and o-dichlorobenzene. For each adsorbate, the adsorption isotherms are measured, the isosteric heats of adsorption and contributions to them from the energies of dispersion Q disp and specific (donor-acceptor) Q spec interactions are calculated, and the electron-donor and electron-acceptor characteristics of the surface of the original UFD and the UFDs with immobilized metal nanoparticles are estimated. It is shown that chlorobenzene is sorbed by the physical adsorption mechanisms on the original support and on a sample modified with nickel nanoparticles, and is chemisorbed on a support modified with palladium nanoparticles. The highest heats of chemisorption are obtained on UFD modified with Pd nanoclusters; a surface of UFD modified with Ni nanoclusters is less active with respect to these chlorobenzenes than a surface of unmodified UFD. Benzene, chloroform, and diethyl ether are sorbed on unmodified and modified UFDs by a physical adsorption mechanism; the highest and lowest values of Q spec for these materials are obtained on UFDs modified with Pd and Ni nanoclusters, respectively.  相似文献   

15.
The H2 physisorption on AgN (with N = 32, 108, 256, 500, and 864)/carbon nanotube (CNT; in armchair and zigzag structures with diameters between 0.54 and 2.98 nm) composites were studied by molecular dynamic simulation to investigate the effect of nanocluster size, diameter, and chirality of nanotube on the adsorption phenomena. The calculations indicate that the effects of nanocluster properties are more important than those of the nanotube, in such a way that increase of nanocluster size, decreases the H2 adsorption. Also, the diameter and chirality of CNTs have considerable influence on the adsorption phenomena. As the diameter of nanotube is increased, the amount of adsorption is decreased. Moreover, H2 molecules have more tendencies to those nanoclusters located on the armchair nanotubes than the zigzag ones. Another important result is the reversibility of H2 adsorption on these materials in which the structure of composite in vacuum and after reduction of H2 pressure to zero, is not changed, considerably. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
Density functional theory calculations are used to study the healing process of a defective CNT (i.e. (8,0) CNT) by CO molecules. The healing undergoes three evolutionary steps: 1) the chemisorption of the first CO molecule, 2) the incorporation of the C atom of CO into the CNT, accompanied by the adsorption of the leaving O atom on the CNT surface, 3) the removal of the adsorbed O atom from the CNT surface by a second CO molecule to form CO2 and the perfect CNT. Overall, adsorption of the first CO reveals a barrier of 2.99 kcal mol?1 and is strongly exothermal by 109.11 kcal mol?1, while adsorption of a second CO has an intrinsic barrier of 32.37 kcal mol?1and is exothermal by 62.34 kcal mol?1. In light of the unique conditions of CNT synthesis, that is, high temperatures in a closed container, the healing of the defective CNT could be effective in the presence of CO molecules. Therefore, we propose that among the available CNT synthesis procedures, the good performance of chemical vapor decomposition of CO on metal nanoparticles might be ascribed to the dual role of CO, that is, CO acts both as a carbon source and a defect healer. The present results are expected to help a deeper understanding of CNT growth.  相似文献   

17.
Adsorbed atomic C species can be formed in the course of surface reactions and commonly decorate metal catalysts. We studied computationally C adsorption on Pd nanoclusters using an all-electron scalar relativistic density functional method. The metal particles under investigation, Pd(55), Pd(79), Pd(85), Pd(116), Pd(140), and Pd(146), were chosen as fragments of bulk Pd in the form of three-dimensional octahedral or cuboctahedral crystallites, exposing (111) and (100) facets as well as edge sites. These cluster models are shown to yield size-converged adsorption energies. We examined which surface sites of these clusters are preferentially occupied by adsorbed C. According to calculations, surface C atoms form strongly adsorbed carbide species (with adsorption energies of more than 600 kJ mol(-1)) bearing a significant negative charge. Surface sites allowing high, fourfold coordination of carbon are overall favored. To avoid effects of adsorbate-adsorbate interaction in the cluster models for carbon species in the vicinity of cluster edges, we reduced the local symmetry of selected adsorption complexes on the nanoclusters by lowering the global symmetry of the nanocluster models from point group O(h) to D(4h). On (111) facets, threefold hollow sites in the center are energetically preferred; adsorbed C is calculated to be slightly less stable when displaced to the facet borders.  相似文献   

18.
In order to investigate the microscopic behavior of the crystal surface growth of the fluorinated cerium dioxide polishing powder, the adsorption and migration of the Ce, O, and F atoms on the CeO2 (111) surface were studied by using density functional theory with Hubbard correction +U. The adsorption energies of three single atoms at five high-symmetry sites and the migration activation energies along the migration pathway on the CeO2 (111) surface were calculated. Results show that the most stable adsorption sites of the Ce, O, and F atoms were the Oh, Cebri, and Cet sites, respectively. The Ce atom migrated from the Oh to the Ot site. The O atom migrated from the Cebri to the Obri site. The F atom migrated from the Cet to the Oh site. The migration activation energies of the Ce, O, and F atoms along the migration pathways were 1.526, 0.597, and 0.263 eV, respectively. The F adatom does not change the spatial configuration of the Ce and the O atoms. When the O vacancy occurs on the CeO2 (111) surface, the F adatom can make up for the O vacancy defect.  相似文献   

19.
The ground-state geometrical and electronic properties of neutral and charged M n C2 (M = Fe, Co, Ni, Cu; n = 1–5) clusters are systematically investigated by density-functional calculations. The growth evolution trends of neutral and charged Fe n C2, Co n C2, Ni n C2 and Cu n C2 (n = 1–5) clusters are all from lower to higher dimensionality, while it is special for Cu n C 2 ± (n = 1–5) clusters which favor planer growth model. The space directional distributions of Co and Ni indicate stronger magnetic anisotropy than that in Cu atoms. Compare with experimental data (photoelectron spectroscopy), our results are in good agreement. The interaction strengths between metal and carbon atoms in TM–C (TM = Fe, Co, Ni) clusters are comparable and are obviously larger than that in Cu–C clusters, and this interaction strengths also decrease through the sequence: cation > neutral > anion, which may be crucial in exploring the differences in the growth mechanisms of metal–carbon nano-materials.  相似文献   

20.
A comparative study of adsorption of H atoms and H2 molecules on Pd3Cu, Cu4, and Pd4 clusters has been performed through density functional calculations, using the hybrid B3LYP exchange‐correlation functional as implemented in the Gaussian98 program. For Pd atoms the relativistic small‐core effective core potential LANL and LANL2DZ basis set was used and for hydrogen a 6‐31G** basis set was used. The main emphasis is set in the reaction behavior of the different clusters with hydrogen atoms and molecules. We find that full geometry optimization does not appreciably change the metal cluster geometry either for certain reaction modes or the H and H2 capture parameters, but increases the number of reactive sites of the metal clusters. Also, we found that there is charge transfer competition between H and Cu atoms, which drastically diminishes H2 adsorption energy, related to the Pd cluster observed value. Edges and threefold sites are the principal hydrogen adsorption sites. Hydrogen has a great mobility over the metal clusters for different minima, especially when Cu is present; many initial pathways end in the same adsorption site. The observed hydrogen adsorption and binding energies are well reproduced by the calculations. Also, the adsorption mechanisms were determined. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号