首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dispersion of the band-gap edge states in bulk topological insulators Bi2Te3 and Bi2Se3 is considered within density functional theory. The dependences of this dispersion both on the approximation used for an exchange-correlation functional at fixed unit cell parameters and atomic positions and on these parameters and positions that are obtained upon structural relaxation performed using a certain approximated functional are analyzed. The relative position of the Dirac point of topologically protected surface states and the valence band maximum in the surface electronic structure of the topological insulators is discussed.  相似文献   

2.
3.
We report the THz response of thin films of the topological insulator Bi2Se3. At low frequencies, transport is essentially thickness independent showing the dominant contribution of the surface electrons. Despite their extended exposure to ambient conditions, these surfaces exhibit robust properties including narrow, almost thickness-independent Drude peaks, and an unprecedentedly large polarization rotation of linearly polarized light reflected in an applied magnetic field. This Kerr rotation can be as large as 65° and can be explained by a cyclotron resonance effect of the surface states.  相似文献   

4.
Electron transport in Bi2Se3 topological insulator slabs is investigated in the thermal activation regime (>50 K) both in the absence (ballistic) and presence of weak and strong acoustic phonon scattering using the non-equilibrium Green function approach. Resistance of the slab is simulated as a function of temperature for a range of slab thicknesses and effective doping in order to gain a handle on how various factors interact and compete to determine the overall resistance of the slab. If the Bi2Se3 slab is biased at the Dirac point, resistance is found to display an insulating trend even for strong electron–phonon coupling strength. However, when the Fermi-level lies close to the bulk conduction band (heavy electron doping), phonon scattering can dominate and result in a metallic behavior, although the insulating trend is retained in the limit of ballistic transport. Depending on values of the operating parameters, the temperature dependence of the slab is found to exhibit a remarkably complex behavior, which ranges from insulating to metallic, and includes cases where the resistance exhibits a local maximum, much like the contradictory behaviors seen experimentally in various experiments.  相似文献   

5.
Topological surface states are protected against local perturbations, but this protection does not extend to chemical reaction over the whole surface, as demonstrated by theoretical studies of the oxidation of Bi(2)Se(3) and its effects on the surface spin polarization and current. While chemisorption of O(2) largely preserves the topological surface states, reaction with atomic O removes the original surface states and yields two new sets of surface states. One set forms a regular Dirac cone but is topologically trivial. The other set, while topologically relevant, forms an unusual rounded Dirac cone. The details are governed by the hybridization interaction at the interface.  相似文献   

6.
We report the formation of a bilayer Bi(111) ultrathin film, which is theoretically predicted to be in a two-dimensional quantum spin Hall state, on a Bi(2)Te(3) substrate. From angle-resolved photoemission spectroscopy measurements and ab initio calculations, the electronic structure of the system can be understood as an overlap of the band dispersions of bilayer Bi and Bi(2)Te(3). Our results show that the Dirac cone is actually robust against nonmagnetic perturbations and imply a unique situation where the topologically protected one- and two-dimensional edge states are coexisting at the surface.  相似文献   

7.
The robustness of the Dirac‐like electronic states on the surfaces of topological insulators (TIs) during materials process‐ing is a prerequisite for their eventual device application. Here, the (001) cleavage surfaces of crystals of the topological insulator Bi2Te2Se (BTS) were subjected to several surface chemical modification procedures that are common for electronic materials. Through measurement of Shubnikov–de Hass (SdH) oscillations, which are the most sensitive measure of their quality, the surface states of the treated surfaces were compared to those of pristine BTS that had been exposed to ambient conditions. In each case – surface oxidation, deposition of thin layers of Ti or Zr oxides, or chemical modification of the surface oxides – the robustness of the topological surface electronic states was demonstrated by noting only very small changes in the frequency and amplitude of the SdH oscillations. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

8.
The effect of atomic impurities including N, O, Na, Ti and Co on the surface states of the topological insulator (TI) Bi(2)Te(3) is studied using pseudopotential first principles methods. The robustness of the TI surface states is particularly investigated against magnetic and non-magnetic atomic adsorption by calculating the electronic band structure, charge transfer, and magnetic moments. Interestingly, it is found that a non-magnetic nitrogen atom has produced a residual magnetic moment and opens a gap in the surface states whereas Na and O atoms preserve the Dirac-like dispersion. The charge transfer from the adatoms produces an electric dipole field that causes Rashba splitting in the surface bands. For atomic impurities with 3d orbitals (Ti and Co), the TI surface states are destroyed and two spin-resolved resonance peaks are developed near the Fermi level in the DOS.  相似文献   

9.
In this work, we develop a theory of thermoelectric transport properties in two-dimensional semiconducting quantum well structures. Calculations are performed for n-type 0.1 wt.% CuBr-doped Bi2Se3/Bi2Te3/Bi2Se3 and p-type 3 wt.% Te-doped Sb2Te3/Bi2Te3/Sb2Te3 quantum well systems in the temperature range 50–600 K. It is found that reducing the well thickness has a pronounced effect on enhancing the thermoelectric figure of merit (ZT). For the n-type Bi2Se3/Bi2Te3/Bi2Se3 with 7 nm well width, the maximum value of ZT is estimated to be 0.97 at 350 K and for the p-type Sb2Te3/Bi2Te3/Sb2Te3 with well width 10 nm the highest value of the ZT is found to be 1.945 at 440 K. An explanation is provided for the resulting higher ZT value of the p-type system compared to the n-type system.  相似文献   

10.
We report x-ray diffraction, electrical resistivity, and magnetoresistance measurements on Bi2Se3 under high pressure and low temperature conditions. Pressure induces profound changes in both the room temperature value of the electrical resistivity as well as the temperature dependence of the resistivity. Initially, pressure drives Bi2Se3 toward increasingly insulating behavior and then, at higher pressures, the sample appears to enter a fully metallic state coincident with a change in the crystal structure. Within the low pressure phase, Bi2Se3 exhibits an unusual field dependence of the transverse magnetoresistance Δρ(xx) that is positive at low fields and becomes negative at higher fields. Our results demonstrate that pressures below 8 GPa provide a non-chemical means to controllably reduce the bulk conductivity of Bi2Se3.  相似文献   

11.
The spectrum of quasiparticles of Bi2Te2X (X = Te, Se, S) three-dimensional topological insulators has been theoretically studied in the GW approximation with the inclusion of the spin-orbit interaction in the construction of the Green’s function and self-energy. It has been shown that many-body corrections to the Kohn-Sham states in Bi2Te2X increase the fundamental band gap similar to conventional semiconductors. However, the band gap at the Γ point decreases in this case. Gaps in the quasiparticle spectrum obtained in agreement with the experimental data correspond to the difference between the minimum of the conduction band, which is located on the Γ-Z line, and the maximum of the valence band, which lies beyond the symmetric directions in the mirror plane.  相似文献   

12.
We performed angle-resolved photoemission (ARPES) experiments with circularly polarized light and first-principles density functional calculation with spin-orbit coupling to study surface states of a topological insulator Bi2Se3. We observed circular dichroism (CD) as large as 30% in the ARPES data with upper and lower Dirac cones showing opposite signs in CD. The observed CD is attributed to the existence of local orbital-angular momentum (OAM). First-principles calculation shows that OAM in the surface states is significant and is locked to the electron momentum in the opposite direction to the spin, forming chiral OAM states. Our finding opens a new possibility for strong light-induced spin-polarized current in surface states. We also provide a proof for local OAM origin of the CD in ARPES.  相似文献   

13.
Investigations of topological insulators, which are two- and three-dimensional systems with a gap in the bulk spectrum and topologically protected gapless edge states, are of considerable fundamental interest at present. The experiments confirming the presence of the edge states in two-dimensional systems with inverted bands and problems of determining the nature of such states in these experiments are reviewed. Special attention is focused on spin-sensitive experiments since the topological edge states have a nontrivial spin structure.  相似文献   

14.
We have performed scanning tunneling microscopy and differential tunneling conductance (dI/dV) mapping for the surface of the three-dimensional topological insulator Bi(2)Se(3). The fast Fourier transformation applied to the dI/dV image shows an electron interference pattern near Dirac node despite the general belief that the backscattering is well suppressed in the bulk energy gap region. The comparison of the present experimental result with theoretical surface and bulk band structures shows that the electron interference occurs through the scattering between the surface states near the Dirac node and the bulk continuum states.  相似文献   

15.
The galvanomagnetic properties of p-type bismuth telluride heteroepitaxial films grown by the hot wall epitaxy method on oriented muscovite mica substrates have been investigated. Quantum oscillations of the magnetoresistance associated with surface electronic states in three-dimensional topological insulators have been studied in strong magnetic fields ranging from 6 to 14 T at low temperatures. The cyclotron effective mass, charge carrier mobility, and parameters of the Fermi surface have been determined based on the results of analyzing the magnetoresistance oscillations. The dependences of the cross-sectional area of the Fermi surface S(k F), the wave vector k F, and the surface concentration of charge carriers n s on the frequency of magnetoresistance oscillations in p-type Bi2Te3 heteroepitaxial films have been obtained. The experimentally observed shift of the Landau level index is consistent with the value of the Berry phase, which is characteristic of topological surface states of Dirac fermions in the films. The properties of topological surface states of charge carriers in p-type Bi2Te3 films obtained by analyzing the magnetoresistance oscillations significantly expand fields of practical application and stimulate the investigation of transport properties of chalcogenide films.  相似文献   

16.
Bi(2)Te(2)Se, a ternary tetradymite compound, has recently been identified to be a three-dimensional topological insulator. In this paper, we theoretically study the electronic structures of bulk and thin films of Bi(2)Te(2)Se employing spin-orbit coupling (SOC) self-consistently with density-functional theory. It is found that SOC plays an important role in determining the electronic properties of Bi(2)Te(2)Se. A finite bandgap opens up in the surface states of Bi(2)Te(2)Se thin films due to the hybridization of the top and bottom surface states of films. The intrinsic Bi(2)Te(2)Se thin films of three or more quintuple layers exhibit a robust topological nature of electronic structure with the Fermi energy intersecting the Dirac cone of the surface states only once between time-reversal-invariant momenta. These characteristics of Bi(2)Te(2)Se are similar to the topological behavior of Bi(2)Te(3), promising a variety of potential applications in nanoelectronics and spintronics.  相似文献   

17.
The electronic structure of Bi(2)Se(3) is studied by angle-resolved photoemission and density functional theory. We show that the instability of the surface electronic properties, observed even in ultrahigh-vacuum conditions, can be overcome via in situ potassium deposition. In addition to accurately setting the carrier concentration, new Rashba-like spin-polarized states are induced, with a tunable, reversible, and highly stable spin splitting. Ab initio slab calculations reveal that these Rashba states are derived from 5-quintuple-layer quantum-well states. While the K-induced potential gradient enhances the spin splitting, this may be present on pristine surfaces due to the symmetry breaking of the vacuum-solid interface.  相似文献   

18.
We discuss the application of time-resolved ultrafast angle resolved photoelectron spectroscopy to the study of photoexcited topological insulators. Measurements performed on the prototype material Bi2Te3 clearly show that all the main processes involved in the ultrafast surface carrier dynamics of topological insulators can be clearly observed and quantitatively analyzed. The comparison with other experimental results shows that the relative position of surface and bulk conduction bands with respect to the system Fermi level play an essential role in the recombination processes following ultrafast optical excitation.  相似文献   

19.
Yunlong Li 《中国物理 B》2021,30(12):127901-127901
Using high-resolution angle-resolved and time-resolved photoemission spectroscopy, we have studied the low-energy band structures in occupied and unoccupied states of three ternary compounds GeBi2Te4, SnBi2Te4 and Sn0.571Bi2.286Se4 near the Fermi level. In previously confirmed topological insulator GeBi2Te4 compounds, we confirmed the existence of the Dirac surface state and found that the bulk energy gap is much larger than that in the first-principles calculations. In SnBi2Te4 compounds, the Dirac surface state was observed, consistent with the first-principles calculations, indicating that it is a topological insulator. The experimental detected bulk gap is a little bit larger than that in calculations. In Sn0.571Bi2.286Se4 compounds, our measurements suggest that this nonstoichiometric compound is a topological insulator although the stoichiometric SnBi2Se4 compound was proposed to be topological trivial.  相似文献   

20.
In this Letter, we report measurements of the coupling between Dirac fermion quasiparticles (DFQs) and phonons on the (001) surface of the strong topological insulator Bi2Se3. While most contemporary investigations of this coupling have involved examining the temperature dependence of the DFQ self-energy via angle-resolved photoemission spectroscopy measurements, we employ inelastic helium-atom scattering to explore, for the first time, this coupling from the phonon perspective. Using a Hilbert transform, we are able to obtain the imaginary part of the phonon self-energy associated with a dispersive surface-phonon branch identified in our previous work [Phys. Rev. Lett. 107, 186102 (2011)] as having strong interactions with the DFQs. From this imaginary part of the self-energy we obtain a branch-specific electron-phonon coupling constant of 0.43, which is stronger than the values reported from the angle-resolved photoemission spectroscopy measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号