首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Femtosecond time-resolved photoemission is used to investigate the time evolution of electronic structure in the Mott insulator 1T-TaS2. A collapse of the electronic gap is observed within 100 femtoseconds after optical excitation. The photoemission spectra and the spectral function calculated by dynamical mean field theory show that this insulator-metal transition is driven solely by hot electrons. A coherently excited lattice displacement results in a periodic shift of the spectra lasting for 20 ps without perturbing the insulating phase. This capability to disentangle electronic and phononic excitations opens new directions to study electron correlation in solids.  相似文献   

2.
We predict a novel electronically driven phase for the recently created C/Si(111) surface at 1/3 monolayer coverage. Whereas the isoelectronic surface Sn/Ge(111) is a 3 x 3 distorted metal and Si/SiC(0001) is an undistorted magnetic Mott insulator, the new phase combines both features. Two of three adatoms in C/Si(111) should form a distorted (3 x 3) honeycomb sublattice, the third an undistorted insulating and magnetic triangular sublattice. The generally conflicting elements, namely, band energy, favoring distortion, and strong electron correlations favoring a Mott state, actually conspire in this case. This kind of state represents the surface analog of the Fazekas-Tosatti state in the charge density wave compound 1T-TaS2.  相似文献   

3.
Femtosecond time-resolved core-level photoemission spectroscopy with a free-electron laser is used to measure the atomic-site specific charge-order dynamics of the charge-density?wave in the Mott insulator 1T-TaS2. After strong photoexcitation, a prompt loss of charge order and subsequent fast equilibration dynamics of the electron-lattice system are observed. On the time scale of electron-phonon thermalization, about 1?ps, the system is driven across a phase transition from a long-range charge ordered state to a quasiequilibrium state with domainlike short-range charge and lattice order. The experiment opens the way to study the nonequilibrium dynamics of condensed matter systems with full elemental, chemical, and atomic-site selectivity.  相似文献   

4.
We use time- and angle-resolved photoemission spectroscopy with sub-30-fs extreme-ultraviolet pulses to map the time- and momentum-dependent electronic structure of photoexcited 1T-TaS(2). This compound is a two-dimensional Mott insulator with charge-density wave ordering. Charge order, evidenced by splitting between occupied subbands at the Brillouin zone boundary, melts well before the lattice responds. This challenges the view of a charge-density wave caused by electron-phonon coupling and Fermi-surface nesting alone, and suggests that electronic correlations play a key role in driving charge order.  相似文献   

5.
The understanding of the interplay of electron correlations and randomness in solids is enhanced by demonstrating that particle-hole ( p-h) symmetry plays a crucial role in determining the effects of disorder on the transport and thermodynamic properties of the half-filled Hubbard Hamiltonian. We show that the low-temperature conductivity decreases with increasing disorder when p-h symmetry is preserved, and shows the opposite behavior, i.e., conductivity increases with increasing disorder, when p-h symmetry is broken. The Mott insulating gap is insensitive to weak disorder when there is p-h symmetry, whereas in its absence the gap diminishes with increasing disorder.  相似文献   

6.
We investigate the ground state phase diagram of the half-filled repulsive Hubbard model in two dimensions in the presence of a staggered potential Delta, the so-called ionic Hubbard model, using cluster dynamical mean-field theory. We find that for large Coulomb repulsion, U > Delta, the system is a Mott insulator (MI). For weak to intermediate values of Delta, on decreasing U, the Mott gap closes at a critical value Uc1(Delta) beyond which a correlated insulating phase with possible bond order is found. Further, this phase undergoes a first-order transition to a band insulator (BI) at Uc2(Delta) with a finite charge gap at the transition. For large Delta, there is a direct first-order transition from a MI to a BI with a single metallic point at the phase boundary.  相似文献   

7.
We address the nature of the Mott transition in the Hubbard model at half-filling using cluster dynamical mean field theory (DMFT). We compare cluster-DMFT results with those of single-site DMFT. We show that inclusion of the short-range correlations on top of the on-site correlations does not change the order of the transition between the paramagnetic metal and the paramagnetic Mott insulator, which remains first order. However, the short range correlations reduce substantially the critical U and modify the shape of the transition lines. Moreover, they lead to very different physical properties of the metallic and insulating phases near the transition point. Approaching the transition from the metallic side, we find an anomalous metallic state with very low coherence scale. The insulating state is characterized by the narrow Mott gap with pronounced peaks at the gap edge.  相似文献   

8.
Charge dynamics in a one-dimensional (1D) Mott insulator was investigated by fs pump-probe reflection spectroscopy on an organic charge-transfer compound, bis(ethylenedithio)tetrathiafulvalene-difluorotetracyanoquinodimethane (ET-F2TCNQ). The analyses of the transient reflectivity changes demonstrate that low-energy spectral weight induced by photocarrier doping is concentrated on a Drude component being independent of the doping density, and midgap state is never formed. Such phenomena can be explained by the concept of spin-charge separation characteristic of 1D correlated electron systems.  相似文献   

9.
We argue that aspects of the anomalous, low temperature, spin and charge dynamics of the high temperature superconductors can be understood by studying the corresponding physics of undoped Mott insulators. Such insulators display a quantum transition from a magnetically ordered Néel state to a confining paramagnet with a spin gap; the latter state has bond-centered charge order, a low energy S=1 spin exciton, confinement of S=1/2 spinons, and a free S=1/2 moment near non-magnetic impurities. We discuss how these characteristics, and the quantum phase transitions, evolve upon doping the insulator into a d-wave superconductor. This theoretical framework was used to make a number of predictions for STM measurements and for the phase diagram of the doped Mott insulator in an applied magnetic field.  相似文献   

10.
We study the quantum phase transition between a band (“ionic”) insulator and a Mott-Hubbard insulator, realized at a critical value in a bipartite Hubbard model with two inequivalent sites, whose on-site energies differ by an offset . The study is carried out both in D=1 and D=2 (square and honeycomb lattices), using exact Lanczos diagonalization, finite-size scaling, and Berry's phase calculations of the polarization. The Born effective charge jump from positive infinity to negative infinity previously discovered in D=1 by Resta and Sorella is confirmed to be directly connected with the transition from the band insulator to the Mott insulating state, in agreement with recent work of Ortiz et al. In addition, symmetry is analysed, and the transition is found to be associated with a reversal of inversion symmetry in the ground state, of magnetic origin. We also study the D=1 excitation spectrum by Lanczos diagonalization and finite-size scaling. Not only the spin gap closes at the transition, consistent with the magnetic nature of the Mott state, but also the charge gap closes, so that the intermediate state between the two insulators appears to be metallic. This finding, rationalized within Hartree-Fock as due to a sign change of the effective on-site energy offset for the minority spin electrons, underlines the profound difference between the two insulators. The band-to-Mott insulator transition is also studied and found in the same model in D=2. There too we find an associated, although weaker, polarization anomaly, with some differences between square and honeycomb lattices. The honeycomb lattice, which does not possess an inversion symmetry, is used to demonstrate the possibility of an inverted piezoelectric effect in this kind of ionic Mott insulator. Received 21 May 1999  相似文献   

11.
We present a detailed angle-resolved photoemission study on the layered transition-metal dichalcogenide 1T-TaS1.2Se0.8 in the commensurate charge-density-wave (CDW) phase. A drastic reduction in the spectral weight along the high symmetry line GammaM, particularly around the point M, is observed when s-polarized light was used. This implies that the initial state must be symmetric with respect to a mirror plane perpendicular to the line GammaK, which is consistent with conventional band calculations in the absence of the CDW. We conclude that there is only a limited amount of modification of the electronic structure of 1T-TaS1.2Se0.8 in the commensurate CDW phase due to the CDW-related potential.  相似文献   

12.
The paper deals with the detailed theoretical investigation of optical coherent transient processes in a narrow direct gap semiconductor quantum well structure (QWS), duly irradiated by a near band gap resonant ultrashort pulsed laser with moderate excitation intensity. The photoinduced band-to-band electronic transitions are considered from both the heavy-hole (hh) and light-hole (lh) valence bands to the lowest (1s) exciton state below the fundamental absorption edge. Since the hole populations in both hh and lh bands are nontrivial in the case of the transverse plane in a QWS, we have recognized that the hh and lh excitons participate in photoinduced transitions. The photoinduced electron density is chosen to be less than the Mott density such that various many-body processes, otherwise significant, can be neglected. The well-established time-dependent perturbation treatment of the semiconductor Bloch equations has been followed to calculate the induced polarization as well as the differential transmission spectra. We find from the numerical estimates made for a GaAs/AlGaAs single QWS shined by a femtosecond pulsed Ti : Sapphire laser that the transmission characteristics of the coherent transient processes are dominated by the lh species in the QWS. Rabi oscillation and Stark splitting as calculated for the two-hole species QWS agree qualitatively very well with recent experimental observations.  相似文献   

13.
Charge dynamics of (Ti1-xVx)2O3 with x=0-0.06 has been investigated by measurements of charge transport and optical conductivity spectra in a wide temperature range of 2-600 K with the focus on the thermally and doping induced insulator-metal transitions (IMTs). The optical conductivity peaks for the interband transitions in the 3d t_{2g} manifold are observed in both the insulating and metallic states, while their large variation (by approximately 0.4 eV) with change of temperature and doping level scales with that of the Ti-Ti dimer bond length, indicating the weakened singlet bond in the course of IMTs. The thermally and V-doping induced IMTs are driven with the increase in carrier density by band crossing and hold doping, respectively, in contrast with the canonical IMT of correlated oxides accompanied by the whole collapse of the Mott gap.  相似文献   

14.
15.
We formulate a U(1) gauge theory of the Hubbard model in the slave-rotor representation. From this formalism it is argued that spin liquid phases may exist near the Mott transition in the Hubbard model on triangular and honeycomb lattices at half filling. The organic compound kappa-(BEDT-TTF)2Cu2(CN)3 is a good candidate for the spin liquid state on a triangular lattice. We predict a highly unusual temperature dependence for the thermal conductivity of this material.  相似文献   

16.
The superfluid to Mott insulator transition in cavity polariton arrays is analyzed using the variational cluster approach, taking into account quantum fluctuations exactly on finite length scales. Phase diagrams in one and two dimensions exhibit important non-mean-field features. Single-particle excitation spectra in the Mott phase are dominated by particle and hole bands separated by a Mott gap. In contrast to Bose-Hubbard models, detuning allows for changing the nature of the bosonic particles from quasilocalized excitons to polaritons to weakly interacting photons. The Mott state with density one exists up to temperatures T/g > or = 0.03, implying experimentally accessible temperatures for realistic cavity couplings g.  相似文献   

17.
18.
The optical spectra of PrBa2Cu4O8 show large in-plane anisotropy. For the a polarization (E perpendicular chain), the spectrum is characterized by a gap of 1.4 eV, indicating the charge-transfer insulating nature of the CuO2 planes. For the metallic chain direction (E // b), the spectrum deviates from a simple Drude response; reflectivity R(b)(omega) shows a sharp edge at approximately 1 eV but it also shows a dip at approximately 15 meV, which splits the conductivity spectrum into two parts--a zero-energy mode with small weight and a pronounced 40 meV mode. These features are discussed in terms of a Tomonaga-Luttinger liquid in a doped 1D Mott insulator and compared with 1D Bechgaard salts.  相似文献   

19.
R. B. Laughlin 《哲学杂志》2013,93(9):1165-1171
A new superconducting Hamiltonian is introduced for which the exact ground state is the Anderson resonating valence bond. It differs from the tJ and Hubbard Hamiltonians in possessing a powerful attractive force. Its superconducting state is characterized by a full and intact d-wave tunnelling gap, quasiparticle photoemission intensities that are strongly suppressed, a suppressed superfluid density, and an incipient Mott–Hubbard gap.  相似文献   

20.
We present a theory of spin and orbital states in Mott insulator LaTiO3. The spin-orbital superexchange interaction between d(1)(t(2g)) ions in cubic crystal suffers from a pathological degeneracy of orbital states at the classical level. Quantum effects remove this degeneracy and result in the formation of the coherent ground state, in which the orbital moment of t(2g) level is fully quenched. We find a finite gap for orbital excitations. Such a disordered state of local degrees of freedom on unfrustrated, simple cubic lattice is highly unusual. Orbital liquid state naturally explains observed anomalies of LaTiO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号