首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We generated a record peak intensity of 0.7 x 10(22) W/cm2 by focusing a 45-TW laser beam with an f/0.6 off-axis paraboloid. The aberrations of the paraboloid and the low-energy reference laser beam were measured and corrected, and a focal spot size of 0.8 microm was achieved. It is shown that the peak intensity can be increased to 1.0 x 10(22) W/cm2 by correction of the wave front of a 45-TW beam relative to the reference beam. The phase and amplitude measurement provides for an efficient full characterization of the focal field.  相似文献   

2.
We demonstrate enhancement by 1 order of magnitude of the high-order harmonics generated in argon by combining a fundamental field at 1300 nm (10(14) W cm(-2)) and its orthogonally polarized second harmonic at 650 nm (2 × 10(13) W cm(-2)) and by controlling the relative phase between them. This extends earlier work by ensuring that the main effect is the combined field steering the electron trajectory with negligible contribution from multiphoton effects compared to the previous schemes with 800/400 nm fields. We access a broad energy range of harmonics (from 20 eV to 80 eV) at a low laser intensity (far below the ionization saturation limit) and observe deep modulation of the harmonic yield with a period of π in the relative phase. Strong field theoretical analysis reveals that this is principally due to the steering of the recolliding electron wave packet by the two-color field. Our modeling also shows that the atto chirp can be controlled, leading to production of shorter pulses.  相似文献   

3.
We have established the intensity limits for propagation of a frequency-doubled (2omega, 527 nm) high intensity interaction beam through an underdense large-scale-length plasma. We observe good beam transmission at laser intensities at or below 2x10(14) W/cm(2) and a strong reduction at intensities up to 10(15) W/cm(2) due to the onset of parametric scattering instabilities. We show that temporal beam smoothing by spectral dispersion allows a factor of 2 higher intensities while keeping the beam spray constant, which establishes frequency-doubled light as an option for ignition and burn in inertial confinement fusion experiments.  相似文献   

4.
The compression of direct-drive, spherical implosions is studied using cryogenic D2 targets on the 60-beam, 351-nm OMEGA laser with intensities ranging from approximately 3x10(14) to approximately 1x10(15) W/cm2. The hard-x-ray signal from hot electrons generated by laser-plasma instabilities increases with laser intensity, while the areal density decreases. Mitigating hot-electron production, by reducing the laser intensity to approximately 3x10(14) W/cm2, results in areal density of the order of approximately 140 mg/cm2, in good agreement with 1D simulations. These results will be considered in future direct-drive-ignition designs.  相似文献   

5.
Generation of sub-10-fs pulses with an average power of 1 W and a peak of 1.5 MW from a Kerr-lens mode-locked mirror-dispersion-controlled Ti:sapphire laser is demonstrated. A specially designed lens triplet focuses the output of this compact all-solid-state source to a peak intensity in excess of 5x10(13) W/cm (2) . Nonperturbative nonlinear optics is now becoming feasible by use of the output of a cw mode-locked laser.  相似文献   

6.
The phase varphi of the field oscillations with respect to the peak of a laser pulse influences the light field evolution as the pulse length becomes comparable to the wave cycle and, hence, affects the interaction of intense few-cycle pulses with matter. We theoretically investigate photoelectron emission induced by an intense, few-cycle laser pulse from a metal surface (jellium) within the framework of time-dependent density functional theory and find a pronounced varphi dependence of the photocurrent. Our results reveal a promising route to measuring varphi of few-cycle light pulses (tau<6 fs at lambda=0.8 microm) at moderate intensity levels (I(p) approximately 10(12) W/cm(2)) using a solid-state device.  相似文献   

7.
We study theoretically the ionization and dissociation of muonic molecular ions (e.g., dd mu) in superintense laser fields. We predict that the bond breaks by tunneling of the lightest ion through a bond-softened barrier at intensity I > or =10(21) W/cm(2). Ionization of the muonic atomic fragment occurs at much higher intensity I > or =6 x 10(22) W/cm(2). Since the field controls the ion trajectory after dissociation, it forces recollision of a approximately 10(5)-10(6) eV ion with the muonic atom. Recollision can trigger a nuclear reaction with sub-laser-cycle precision. In general, molecules can serve as precursors for laser control of nuclear processes.  相似文献   

8.
The measurement of peak laser intensities exceeding 10(20) W/cm(2) is in general a very challenging task. We suggest a simple method to accurately measure such high intensities up to about 10(23) W/cm(2), by colliding a beam of ultrarelativistic electrons with the laser pulse. The method exploits the high directionality of the radiation emitted by ultrarelativistic electrons via nonlinear Thomson scattering. Initial electron energies well within the reach of laser wake-field accelerators are required, allowing in principle for an all-optical setup. Accuracies of the order of 10% are theoretically envisaged.  相似文献   

9.
The dynamics of electrons ionized from high charge states by lasers with intensity >10(20) W/cm(2) have been studied. At these intensities vxB forces drive the electrons subsequent to ionization in a trajectory nearly parallel to the laser propagation direction. This gives rise to large energy gains as the electron rides in phase with the laser field over a long distance. Monte Carlo simulations illustrate that, unlike in case of ionization in sub- and near-relativistic intensity fields (<10(19) W/cm(2)), the electron dynamics in the ultrarelativistic case are strongly influenced by the longitudinal electric fields found near the focus of a tightly focused laser.  相似文献   

10.
11.
A systematic research on intensity clamping phenomenon was conducted both in air and argon by using a TW level femtosecond laser. Though the laser peak power was increased from 0.1 up to 1.5 TW in the experiment, highly stabilized peak intensity inside the filament was observed in both gases. The peak intensities inside filaments were experimentally determined to be about 6.4 × 1013 W/cm2 (f = 20 cm) in air and 1.2, 1.3, and 1.7 × 1014 W/cm2 when different focal lenses (f = 100, 60, and 20 cm) were used in argon, respectively.  相似文献   

12.
We study electron correlation in sequential double ionization of noble gas atoms and HCl in intense, femtosecond laser pulses. We measure the photoelectron angular distributions of Ne+ relative to the first electron in a pump-probe experiment with 8 fs, 800 nm, circularly polarized laser pulses at a peak intensity of a few 10(15) W/cm2. Using a linear-linear pump-probe setup, we further study He, Ar, and HCl. We find a clear angular correlation between the two ionization steps in the sequential double ionization intensity regime.  相似文献   

13.
We present for the first time the experimental validation of the nonlocal thermal-transport model for a National Ignition Facility relevant laser intensity of approximately 10(15) W/cm(2) on OMEGA. The measured thin target trajectories are in good agreement with predictions based on the nonlocal model over the full range of laser intensities from 2 x 10(14) to 10(15) W/cm(2}) The standard local thermal-transport model with a constant flux limiter of 0.06 disagrees with experimental measurements at a high intensity of approximately 10(15) W/cm(2) but agrees at lower intensities. These results show the significance of nonlocal effects for direct-drive ignition designs.  相似文献   

14.
Intense terahertz pulses by four-wave rectification in air   总被引:6,自引:0,他引:6  
Cook DJ  Hochstrasser RM 《Optics letters》2000,25(16):1210-1212
We describe a new four-wave rectification method for the generation of intense, ultrafast terahertz (THz) pulses from gases. The fundamental and second-harmonic output of an amplified Ti:sapphire laser is focused to a peak intensity of ~5x10(14)W/cm (2) . Under these conditions, peak THz fields estimated at 2 kV/cm have been observed; the measured power spectrum peaks near 2 THz. Phase-dependent measurements show that this is a coherent process and is sensitive to the relative phases of the fundamental and second-harmonic pulses. Comparable THz signals have been observed from nitrogen and argon as well as from air.  相似文献   

15.
We have measured the energy and angular-resolved electron emission from medium-sized silver clusters (N approximately 500-2000) exposed to dual laser pulses of moderate intensity (I approximately (10(13-14) W/cm2). When the second pulse excites the plasmon resonantly, we observe enhanced emission along the laser polarization axis. The asymmetry of the electron spectrum is strongly increasing with electron energy. Semiclassical simulations reveal the following mechanism: Electrons bound in highly excited states can leave, return to, and traverse the cluster. Those electrons that return at zero plasmon deflection and traverse the cluster during a favorable plasmon half-cycle can experience maximum acceleration by the evolving polarization field. As a result of these constraints energetic electrons are emitted in direction of the laser polarization axis in subcycle bursts.  相似文献   

16.
Photofragmentation of Na2 + molecules in well prepared vibrational levels has been studied employing intense ( 10(11)-10(14) W/cm2) and ultrashort (80 fs) 790 nm laser fields. Four fragmentation channels with different released kinetic energies are observed. Depending on the applied laser intensity, the fragmentation of Na2 + is governed by photodissociation on light-induced potentials and field ionization followed by Coulomb explosion. Below 1x10(12) W/cm2, only photodissociation on light-induced potentials is seen. For intermediate laser intensities, field ionization at large internuclear distances competes with photodissociation, thus preventing the observation of above threshold dissociation. Field ionization at small internuclear distances dominates for the highest laser intensities used.  相似文献   

17.
We theoretically study the response of He+ exposed simultaneously to an intense Ti:sapphire laser and its 27th or 13th harmonic pulses. High-order harmonic emission from He+ is enhanced by many orders of magnitude compared with the case of the fundamental pulse alone. Moreover, while an individual 10 fs laser (wavelength lambda(F)=800 nm) or its 27th harmonic pulse with a peak intensity of 3 x 10(14) and 10(13) W/cm(2), respectively, ionizes no more than 5 x 10(-6) of He+, their combined pulse leads to a surprisingly high He2+ yield of 17%.  相似文献   

18.
We have measured the momentum distributions of singly and doubly charged helium ions created in the focus of 220 fs, 800 nm laser pulses at intensities of (2.9-6.6)x10(14) W/cm(2). All ions are emitted strongly aligned along the direction of polarization of the light. We find the typical momenta of the He2+ ions to be 5-10 times larger than those of the He1+ ions and a two peak structure at the highest intensity.  相似文献   

19.
We study the photodetachment of H-, F-, and Br- in a short laser pulse of 800 nm wavelength and 6 x 10(14) W/cm2 peak intensity. Photoelectron spectra, recorded with the use of an imaging technique, reveal a substantial contribution from the sequential process of double detachment of halogen negative ions. The saturation effect is shown to play a crucial role in this process. The role of the alignment of atoms produced by photodetachment is discussed.  相似文献   

20.
Micro-lens arrays were adopted to homogenize the beam profile of 532-nm pumping laser for the main amplifier of an intense femtosecond, chirped pulse amplification (CPA) Ti:sapphire laser. Experimental measurements showed a great improvement of the near-field pattern of the CPA beam after the main amplifier and the size of the focal spot was improved from 2.7 times diffraction limitation (DL) to 1.6 DL.The spot size focused by an f/4 off-axis parabola (OAP) in the target chamber was measured to be 5.8μm (full-width at half-maximum (FWHM)), and a peak intensity of 2.6 × 1020 W/cm2 was obtained at the output power of 120 TW. Peak intensity exceeding 1021 W/cm2 or even 1022 W/cm2 can be expected with smaller f-number focusing configuration and wavefront correction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号