首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
High-contrast microscopy of semiconductor and metal sites in integrated circuits is demonstrated with laser-scanning confocal reflectance microscopy, one-photon (1P) optical-beam-induced current (OBIC) imaging, and detection of optical feedback by means of a commercially available semiconductor laser that also acts as an excitation source. The confocal microscope has a compact in-line arrangement with no external photodetector. Confocal and 1P OBIC images are obtained simultaneously from the same focused beam scanned across the sample plane. Image pairs are processed to generate exclusive high-contrast distributions of semiconductor, metal, and dielectric sites in a GaAs photodiode array sample.  相似文献   

2.
Phenomenon of autofluorescence from vegetative microspores of spore-breding plant Equisetum arvense has been studied by methods of laser-scanning confocal microscopy (LSCM) and microspectrofluorimetry during the development of the cells. The microspores have demonstrated a difference between structures: blue-fluorescing cover and red-fluorescing chloroplasts. The fluorescence spectra of the studied cells was also measured by original microspectrofluorimeter. The character of the spectra and the color of fluorescence was changed during the microspores germination. The red fluorescence of the microspores was, mainly, due to the presence of chlorophyll and azulenes. The unicellular microspores may be recommended as natural probes of cellular viability and development.  相似文献   

3.
A laser scanning confocal imaging-surface plasmon resonance (LSCI-SPR) instrument integrated with a wavelength-dependent surface plasmon resonance (SPR) sensor and a laser scanning confocal microscopy (LSCM) is built to detect the bonding process of human IgG and fluorescent-labeled affinity purified antibodies in real time. The shifts of resonant wavelength at different reaction time stages are obtained by SPR, corresponding well with the changes of the fluorescence intensity collected by using LSCM. The instrument shows the merits of the combination and complementation of the SPR and LSCM, with such advantages as quantificational analysis, high spatial resolution and real time monitor, which are of great importance for practical applications in biosensor and life science.  相似文献   

4.
We propose an arbitrary controlled-unitary(CU) gate and a bidirectional quantum teleportation(BQTP) scheme. The proposed CU gate utilizes photonic qubits(photons) with cross-Kerr nonlinearities(XKNLs), X-homodyne detectors, and linear optical elements, and consists of the consecutive operation of a controlled-path(C-path) gate and a gathering-path(Gpath) gate. It is almost deterministic and feasible with current technology when a strong coherent state and weak XKNLs are employed. Based on the CU gate, we present a BQTP scheme that simultaneously teleports two unknown photons between distant users by transmitting only one photon in a path-polarization intra-particle hybrid entangled state. Consequently, it is possible to experimentally implement BQTP with a certain success probability using the proposed CU gate.  相似文献   

5.
We present a deterministic nondestructive hyperentangled Bell state analysis protocol for photons entangled in three degrees of freedom(DOFs),including polarization,spatial-mode,and time-bin DOFs.The polarization Bell state analyzer and spatial-mode Bell state analyzer are constructed by polarization parity-check quantum nondemolition detector(P-QND)and spatial-mode parity-check quantum nondemolition detector(S-QND)using cross-Kerr nonlinearity,respectively.The time-bin Bell state analyzer is constructed by the swap gate for polarization state and time-bin state of a photon(P-T swap gate)and P-QND.The Bell states analyzer for one DOF will not destruct the Bell states of other two DOFs,so the polarization-spatial-time-bin hyperentangled Bell states can be determinately distinguished without destruction.This deterministic nondestructive state analysis method has useful applications in quantum information protocols.  相似文献   

6.
We developed a newly designed ultraviolet laser-scanning confocal microscopy (UV-LSCM) system and applied it for quantitative confocal imaging of intracellular calcium concentration ([Ca2+]i) with the dual-emission wavelength indicator indo-1. The resolution and contrast of the biological sample images obtained using the current UV system were found to be comparable to those obtained with the conventional visible LSM optics and hence the UV-transmittable optics in our LSM system employing an achromatic objective lens provides appreciable confocality in the UV range. When indo-1 is used with this UV-LSCM system, dual- imaging ratiometric measurement of [Ca2+]i can be easily performed without requiring time-consuming geometrical decalibration of the two simultaneously obtained images. The resulting confocal images allow quantitative analysis of [Ca2+]i in rapidly contractile cardiac cells at a high temporal resolution in line-scan and fast frame-scan modes. The combined use of the UV-LSCM and dual- emission ratiometric indicator is now practical and we anticipate its widespread application in physiological and pathological studies in living cells.  相似文献   

7.
Hyper-parallel quantum information processing is a promising and beneficial research field. Herein, a method to implement a hyper-parallel controlled-phase-flip (hyper-CPF) gate for frequency-, spatial-, and time-bin-encoded qubits by coupling flying photons to trapped nitrogen vacancy (NV) defect centers is presented. The scheme, which differs from their conventional parallel counterparts, is specifically advantageous in decreasing against the dissipate noise, increasing the quantum channel capacity, and reducing the quantum resource overhead. The gate qubits with frequency, spatial, and time-bin degrees of freedom (DOF) are immune to quantum decoherence in optical fibers, whereas the polarization photons are easily disturbed by the ambient noise.  相似文献   

8.
Chou C  Peng LC  Chou YH  Tang YH  Han CY  Lyu CW 《Optics letters》2000,25(20):1517-1519
A method that uses a Zeeman laser in conjunction with a Glan-Thompson analyzer to image an object in a turbid medium is proposed. A heterodyne signal is generated only when the scattering photons are partially polarized, and the spatial coherence is not seriously degraded after the signal propagates in the turbid medium. A system combining polarization discrimination with optical coherence detection to image the object in a scattering medium is successfully demonstrated. The medium is a solution of polystyrene microspheres measuring 1.072 mum in diameter suspended in distilled water contained in a 10-mm-thick quartz cuvette. The advantages of this optical system, including better selectivity of the weak partially polarized scattering photons and better imaging ability in higher-scattering media, are discussed.  相似文献   

9.
Fiber-coupled multiplexed confocal microscope   总被引:2,自引:0,他引:2  
Lin CP  Webb RH 《Optics letters》2000,25(13):954-956
We describe a new parallel scanning mechanism for confocal microscopy that is inherently fiber-optic compatible and that retains the simplicity of the line scanning confocal microscope. The method works by employing an incoherent fiber-optic bundle that maps a line illumination pattern back on itself on double passing, while separating the fibers that carry photons from out-of-focus sample planes. The transformation permits efficient rejection of out-of-focus photons by a slit aperture.  相似文献   

10.
Near-infrared (NIR) fluorescence imaging is an important imaging technology in deep-tissue biomedical imaging and related researches, due to the low absorption and scattering of NIR excitation and/or emission in biological tissues. Laser scanning confocal microscopy (LSCM) plays a significant role in the family of fluorescence microscopy. Due to the introduction of pinhole, it can provide images with optical sectioning, high signal-to-noise ratio and better spatial resolution. In this study, in order to combine the advantages of these two techniques, we set up a fluorescence microscopic imaging system, which can be named as NIR-LSCM. The system was based on a commercially available confocal microscope, utilizing a NIR laser for excitation and a NIR sensitive detector for signal collection. In addition, NIR fluorescent nanoparticles (NPs) were prepared, and utilized for fluorescence imaging of the ear and brain of living mice based on the NIR-LSCM system. The structure of blood vessels at certain depth could be visualized clearly, because of the high-resolution and large-depth imaging capability of NIR-LSCM.  相似文献   

11.
The characterization and performance of the femtosecond fluorescence up-conversion microscope is reported in this paper. This new fluorescence microscope is a combination of the frequency up-conversion technique and a confocal optical configuration, which simultaneously achieves femtosecond time and nanometer space resolution. The femtosecond time resolution was evaluated by measuring the rise up of time-resolved fluorescence from a dye molecule, and it was 520 fs and 460 fs with 100× (N.A.=1.3) and 40× (N.A.=0.75) objective lenses, respectively. The best transverse (XY) resolution was 0.34 m with the 100× objective lens for 400 nm excitation. An axial (Z) resolution as high as 1.1 m was obtained for 600 nm fluorescence detection with a 50 m pinhole and a 100× objective lens. The axial resolution was remarkably improved compared with ordinary confocal microscopes owing to the up-conversion process, which requires spatial overlap between the tightly focused gate and the fluorescence beams. Femtosecond time-resolved fluorescence measurements were performed for micro-meter sized particles in liquids, fluorescent beads and C519/toluene micro droplets, by using the laser trapping technique. The high potential of the fluorescence up-conversion microscope was demonstrated. PACS 78.47.+p; 87.64.-t; 82.53.-k  相似文献   

12.
Okuno M  Hamaguchi HO 《Optics letters》2010,35(24):4096-4098
We have developed a multifocus confocal Raman microspectroscopic system for the fast multimode vibrational imaging of living cells. It consists of an inverted microscope equipped with a microlens array, a pinhole array, a fiber bundle, and a multichannel Raman spectrometer. Forty-eight Raman spectra from 48 foci under the microscope are simultaneously obtained by using multifocus excitation and image-compression techniques. The multifocus confocal configuration suppresses the background generated from the cover glass and the cell culturing medium so that high-contrast images are obtainable with a short accumulation time. The system enables us to obtain multimode (10 different vibrational modes) vibrational images of living cells in tens of seconds with only 1 mW laser power at one focal point. This image acquisition time is more than 10 times faster than that in conventional single-focus Raman microspectroscopy.  相似文献   

13.
We devise a platform for noise-resistant quantum computing using the valley degree of freedom of Si quantum dots. The qubit is encoded in two polarized (1,1) spin-triplet states with different valley compositions in a double quantum dot, with a Zeeman field enabling unambiguous initialization. A top gate gives a difference in the valley splitting between the dots, allowing controllable interdot tunneling between opposite valley eigenstates, which enables one-qubit rotations. Two-qubit operations rely on a stripline resonator, and readout on charge sensing. Sensitivity to charge and spin fluctuations is determined by intervalley processes and is greatly reduced as compared to conventional spin and charge qubits. We describe a valley echo for further noise suppression.  相似文献   

14.
基于砷化镓/磷化铟雪崩光电二极管(InGaAs/InP APD)的半导体单光子探测器因工作在通信波段,且具有体积小、成本低、操作方便等优势,在实用化量子通信技术中发挥了重要作用.为尽可能避免暗计数和后脉冲对单光子探测的影响,InGaAs/InP单光子探测器广泛采用门控技术来快速触发和淬灭雪崩效应,有效门宽通常在纳秒量级.本文研究揭示了门控下单光子探测器可测量的最大符合时间宽度受限于门控脉冲的宽度,理论分析与实验结果良好拟合.该研究表明,门控下InGaAs/InP单光子探测器用于双光子符合测量具有显著的时域滤波特性,限制了其在基于双光子时间关联测量的量子信息技术中的应用.  相似文献   

15.
We present a new optical microscope in which the light transmitted by a sample-scanned transmission confocal microscope is frequency-tripled by SiOx nanocrystallites in lieu of being transmitted by a confocal pinhole. This imaging technique offers an increased contrast and a high scattered light rejection. It is demonstrated that the contrast close to the Sparrow resolution limit is enhanced and the sectioning power are increased with respect to the linear confocal detection mode. An experimental implementation is presented and compared with the conventional linear confocal mode.  相似文献   

16.
We propose an arbitrary controlled-unitary(CU) gate and a bidirectional transfer scheme of quantum information(BTQI) for unknown photons.The proposed CU gate utilizes quantum non-demolition photon-number-resolving measurement based on the weak cross-Kerr nonlinearities(XKNLs) and two quantum bus beams;the proposed CU gate consists of consecutive operations of a controlled-path gate and a gathering-path gate.It is almost deterministic and is feasible with current technology when a strong amplitude of the coherent state and weak XKNLs are employed.Compared with the existing optical multi-qubit or controlled gates,which utilize XKNLs and homodyne detectors,the proposed CU gate can increase experimental realization feasibility and enhance robustness against decoherence.According to the CU gate,we present a BTQI scheme in which the two unknown states of photons between two parties(Alice and Bob) are mutually swapped by transferring only a single photon.Consequently,by using the proposed CU gate,it is possible to experimentally implement the BTQI scheme with a certain probability of success.  相似文献   

17.
We report a laser-scanning confocal reflectance microscope with a wavelet-profiled point spread function (PSF) for rapid multi-resolution extraction and analysis of microscopic object features. The PSF is generated via holography by encoding a π-phase shifting disk unto a collimated laser beam via a phase-only spatial light modulator (SLM) that is positioned at the pupil plane of the focusing objective lens. Scaling of the transverse PSF distribution is achieved by selecting a suitable ratio of the π-phase shifting disk radius and the pupil aperture radius. With one and the same objective lens and one SLM to control the phase profile of the pupil function, we produce amplitude PSF distributions that are accurate scaled representations of the circularly-symmetric Mexican hat mother wavelet.  相似文献   

18.
L. Ma  O. Slattery  X. Tang 《Laser Physics》2010,20(5):1244-1250
Quantum information systems are commonly operated in conventional communication bands (1310 and 1550 nm) over an optical fiber to take advantage of low transmission loss. However, the detection and spectral measurement of single photons in these communication bands are limited due to high noise and low sensitivity of single photon detectors in the wavelength ranges. To demonstrate high efficiency detection and high sensitivity spectral measurement, we have implemented a single photon detector and a spectrometer based on frequency up-conversion technology. This detector and spectrometer uses a 5-cm periodically poled lithium niobate (PPLN) waveguide and a tunable pump laser around 1550 nm, to convert signal photons around 1310 to 710 nm. The converted photons are then detected by a silicon-based avalanche photodiode (APD). The overall detection efficiency of the single photon detector is as high as 32%, which is three times higher than commercial InGaAs APDs. The sensitivity of the spectrometer is measured to be −126 dBm, which is at least three orders-of-magnitude better than any commercial optical spectrum analyzer in this wavelength range.  相似文献   

19.
We propose a scheme for realizing conventional geometric quantum phase gates in the context of cavity QED. During the operation neither the atomic system nor the cavity mode is excited, which is important in view of decoherence. The scheme does not require detection of photons, so the gate operation is deterministic and the influence of photodetection imperfection is eliminated. Taking advantage of the geometric manipulation, the phase gate is resilient to fluctuations of experimental parameters.  相似文献   

20.
Many membrane proteins and lipids are partially confined in substructures ranging from tens of nanometers to micrometers in size. Evidence for heterogeneities in the membrane of oligodendrocytes, i.e. the myelin-producing cells of the central nervous system, is almost exclusively based on detergent methods. However, as application of detergents can alter the membrane phase behaviour, it is important to investigate membrane heterogeneities in living cells. Here, we report on the first investigations of the diffusion behavior of the myelin-specific protein MOG (myelin oligodendrocyte glycoprotein) in OLN-93 as studied by the recently developed RICS (raster-scanning image correlation spectroscopy) technique. We implemented RICS on a standard confocal laser-scanning microscope with one-photon excitation and analog detection. Measurements on FITC-dextran were used to evaluate the performance of the system and the data analysis procedure. Ellen Gielen and Nick Smisdom contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号