首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了高氧化态过渡金属盐(CuX2/L、FeX3/L,X=C1或Br;L =2,2′-联吡啶、N,N'-四甲基乙二胺、N,N,N′,N″,N″-五甲基二亚乙基三胺;CuSO4)催化甲基丙烯酸2-(N,N-二乙氨基)乙酯(DEAEMA)的自引发氧化聚合,利用气相色谱跟踪单体转化率、利用凝胶渗透色谱和多角激光光散射跟踪聚合...  相似文献   

2.
研究了少量N-[4-(α-溴代异丁酰氧基)苯基]马来酰亚胺(BiBPM)与大量甲基丙烯酸-N,N-二甲氨基乙酯(DMAEMA)在CuBr/N,N,N′,N″,N″-五甲基二乙烯三胺(PMDETA)催化下的自缩合原子转移自由基共聚合(SCATRCP).分别利用气相色谱、三检测凝胶渗透色谱测定了聚合反应过程中DMAEMA的转化率、所得聚合物(PDMAEMA)的分子量与分子量分布、绝对分子量和特性黏数等随着反应时间的变化.结果表明,在以上聚合过程中,PDMAEMA的分子量随着聚合的进行而不断上升,但是支化度持续下降.由此可知,在聚合早期就形成了低分子量而高支化度的PDMAEMA,在聚合后期,主要进行DMAEMA的ATRP,导致支化度随着分子量的上升而逐渐下降.  相似文献   

3.
Cytotoxicity of A β with redox active metals in neuronal cells has been implicated in the progression of Alzheimer’s disease (AD).Zn7MT-3 protects cell against Aβ-Cu2+ toxicity.The roles of single domain proteins(α/β) andα-βdomain-domain interaction of Zn7MT-3 in its anti-Aβ1-42-Cu2+ toxicity activity were investigated herein.Aβ1-42 and four mutants of human MT3 (α/βdomain,β(MT3)-α(MTl) and A31-34) were prepared and characterized.Aβ1-42-Cu2+ induced hydroxyl radical and ROS production with/without Zn-MTs were measured by fluorescence spectroscopy and DCFH-DA in living cells,respectively.These results indicate that the two domains form a co-operative unit and each of them is indispensable in conducting its bioactivity.  相似文献   

4.
In order to explore the reuse properties of oxidized chelating resin containing sulfur after adsorption, two kinds of novel chelating resins, poly[4-vinylbenzyl-(2-hydroxyethyl)] sulfoxide (PVBSO) and poly[4-vinylbenzyl-(2-hydroxyethyl)] sulfone (PVBSO2), were synthesized using poly[4-vinylbenzyl-(2-hydroxyethyl)] sulfide (PVBS) as material. Their structures were confirmed by FTIR and XPS. The adsorption properties and mechanism for metal ions such as Au3+, Pt4+, Pd2+, Hg2+, Cu2+, Ni2+, Fe3+, Pb2+, Cd2+, and Zn2+ were investigated. Experimental results showed that PVBSO had good adsorption and selective properties for Au3+, Pd2+ and Cu2+ when the coexisting ion was Pt4+, Ni2+, Pb2+ or Cd2+. In the aqueous system containing Cu2+ and Pb2+ or Cu2+ and Cd2+, PVBSO2 only adsorbed Cu2+. The selective coefficients of PVBSO and PVBSO2 were αAu/Pt = 4.8, αAu/Pd = 11.8, αPd/Pt = 10.9, αCu/Ni = 2.5, αCu/Cd = 41.2, αCu/Pb = ∞, αCu/Ni = 3.0, αCu/Cd = ∞, αCu/Pb = ∞, respectively.  相似文献   

5.
Here, we reported the synthesis of branched poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) via a combination of activator generated by electron transfer atom transfer radical polymerization (AGET ATRP) and self-condensing vinyl polymerization (SCVP) techniques. The typical linear kinetics of the AGET ATRP of DMAEMA with the initiation of 2-(2-bromoisobutyryloxy) ethyl methacrylate (BIEM) was observed. The molecular weight (Mn ) of the branched PDMAEMA increased with the monomer conversion. The GPC traces of these polymers were unimodal and the molecular weight distributions (Mw/Mn ) were in the range of 1.30–2.10. The degree of branching (DB) determined by NMR spectra agreed with theoretical value. The branched amphiphilic copolymer functionalized with azobenzene was then prepared via AGET ATRP chain-extension of branched PDMAEMA with azobenzene monomer, 6-[4-(4-methoxyphenylazo)phenoxy]hexyl(meth)acrylate as the second monomer. The GPC traces of these branched copolymers showed the mono-peaks, which proved the successful preparation of copolymers. The properties of this branched copolymer in controlling drug release were also investigated. It was found that the drug release rate of chlorambucil can be controlled by various factors, such as polymer structure, light, temperature and pH values.  相似文献   

6.
The room-temperature crystal structure of a new Cu(II) oxyphosphate—α Cu0.50IITiO(PO4)—was determined from X-ray single crystals diffraction data, in the monoclinic system, space group P21/c. The refinement from 5561 independent reflections lead to the following parameters: a=7.5612(4)Å, b=7.0919(4)Å, c=7.4874(4)Å, β=122.25(1)°, Z=4, with the final R=0.0198, wR=0.0510. The structure of α Cu0.50IITiO(PO4) can be described as a TiOPO4 framework constituted by chains of tilted corner-sharing [TiO6] octahedra running parallel to the c-axis and cross linked by phosphate [PO4] tetrahedra, where one-half of octahedral cavities created are occupied by Cu atoms. Ti atoms are displaced from the center of octahedra units in alternating long (2.308 Å) and short (1.722 Å) Ti-O(1) bonds along chains. Such O(1) atoms not linked to P atoms justify the oxyphosphate formulation α Cu0.50TiO(PO4). The divalent cations Cu2+ occupy a Jahn-Teller distorted octahedron sharing two faces with two [TiO6] octahedra. EPR and optical measurements are in good agreement with structural data. The X-ray diffraction results are supported by Raman and infrared spectroscopy studies that confirmed the existence of the infinite chains -Ti-O-Ti-O-Ti-. α Cu0.50TiO(PO4) shows a Curie-Weiss paramagnetic behavior in the temperature range 4-80 K.  相似文献   

7.
Cu–Mn bimetal catalysts were prepared to remove nitrogen oxides (NOx) from diesel engine exhaust at low temperatures. At a Cu/Mn ratio of 3:2, the NOx conversions at 200 °C reached 65% and 90% on Cu–Mn/ZSM-5 and Cu–Mn/SAPO-34, respectively. After a hydrothermal treatment and reaction in the presence of C3H6, the activity of Cu–Mn/SAPO-34 was more stable than that of Cu–Mn/ZSM-5. No obvious variations in the crystal structure or dealumination were observed, whereas the physical structure was best maintained in Cu–Mn/SAPO-34. The atomic concentration of Cu on the surface of Cu–Mn/SAPO-34 was quite stable, and the consumption of octahedrally coordinated Cu2+ could be recovered. Conversely, the proportion of octahedrally coordinated Cu2+ on the surface of Cu–Mn/ZSM-5 significantly decreased. Therefore, besides the structure, the redox cycle between Cu+ and octahedrally coordinated Cu2+ played an important role in the stability of the catalysts.  相似文献   

8.
PDMAEMA‐b‐PMAA block copolymers were prepared by the sequential RAFT polymerization of DMAEMA and tBMA, followed by hydrolysis. Phosphotungstic acid (HPW) was anchored to the PDMAEMA blocks through electrostatic interactions and the as‐obtained HPW/PDMAEMA‐b‐PMAA was added to the synthesis of ZIF‐8. During the formation of ZIF‐8, the PMAA blocks coordinated to the Zn2+ ions through their carboxy groups, along with the HPW groups that were anchored to the PDMAEMA blocks. In this way, the block copolymer could consolidate the interactions between HPW and ZIF‐8 and prevent the leakage of HPW. Finally, the HPW/PDMAEMA‐b‐PMAA/ZIF‐8 ternary lamellar composite was obtained and the structure of the HPW/PDMAEMA‐b‐PMAA/ZIF‐8 hybrid material was characterized by using powder X‐ray diffraction (PXRD), X‐ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). As a photocatalyst, the HPW/PDMAEMA‐b‐PMAA/ZIF‐8 ternary lamellar composite showed excellent photoactivity for the degradation of methylene blue (MB). The rate of degradation of MB was 0.0240 min?1, which was 7.5‐times higher than that of commercially available P25 (0.0032 min?1). In the presence of H2O2, the kinetic degradation parameters of the composite reached 0.0634 min?1, which was about 19.8‐times higher than that of P25.  相似文献   

9.
10.
摘要: 以优化的两步一锅反应法合成了生物金属有机化合物Fe(C5H4-CH2-Trp-OMe)2FcL),通过NMR、HRMS及IR等对其结构进行了表征,利用X射线单晶衍射测定了分子结构。循环伏安法研究表明FcL在0.00~0.90 V电位范围内,给出一稳定的、形态良好的氧化还原峰,这归于化合物中Fc/Fc+电对的氧化还原过程。电化学金属离子识别研究显示FcL在过渡金属离子Zn2+和Cu2+的存在下,导致了配体Fc/Fc+式量电位的显著阳极移动,其△E0''对Zn2+和Cu2+分别为342和335 mV,表明了FcL对Zn2+和Cu2+具有良好的识别能力。  相似文献   

11.
In the structure of the title compound, [CuCl2­(C2H3N)(C6H8N2)], each Cu2+ cation is surrounded by two 2,5-di­methyl­pyrazine ligands, one aceto­nitrile ligand and two Cl anions within a distorted tetragonal pyramid. The aceto­nitrile ligand, which forms the apex of the pyramid, the Cu2+ cation and the Cl anions are all located in general positions, whereas each of the 2,5-di­methyl­pyrazine ligands is located about a centre of inversion. The 2,5-di­methyl­pyrazine ligands connect the Cu2+ cations viaμ-N:N′ coordination to form chains.  相似文献   

12.
Various novel block cationomers consisting of polyisobutylene (PIB) and poly[2‐(dimethylamino)ethyl methacrylate] (PDMAEMA) segments were synthesized and characterized. The specific targets were various molecular weight diblocks (PIB‐b‐PDMAEMA+) and triblocks (PDMAEMA+b‐PIB‐b‐PDMAEMA+), with the PIB blocks in the DPn = 50–200 range (number‐average molecular weight = 3,000–9000 g/mol) connected to blocks of PDMAEMA+ cations in the DPn = 5–20 range (where DP is the number‐average degree of polymerization). The overall synthetic strategy for the preparation of these block cationomers had four steps: (1) synthesis by living cationic polymerization of mono‐ and diallyltelechelic polyisobutylenes, (2) end‐group transformation to obtain PIBs fitted with termini capable of mediating the atom transfer radical polymerization (ATRP) of DMAEMA, (3) ATRP of DMAEMA, and (4) quaternization of PDMAEMA to PDMAEMA +I? by CH3I. Scheme 1 shows the microarchitecture and outlines the synthesis route. Kinetic and model experiments provided guidance for developing convenient synthesis methods. The microarchitecture of PIB–PDMAEMA di‐ and triblocks and the corresponding block cationomers were confirmed by 1H NMR and FTIR spectroscopy and solubility studies. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3679–3691, 2002  相似文献   

13.
The efficiency of a complex forming cellulose ion-exchanger with α(β)-alanin-N,N-diacetic acid anchor groups, containing still weakly acid carboxylic groups, is compared with that of a modified carboxyethylcellulose with the same type of the anchoring carboxylic functional groups and its specific behaviour in column chromatography was followed by binary mixtures of the cations CrO 4 2? , Fe3+, Cu2+, Ni2+, Pb2+, Co2+, Cd2+, Mn2+, Ca2+, Mg2+.  相似文献   

14.
2-Dimethylaminoethyl methacrylate (DMAEMA) and 2-diethylaminoethyl methacrylate (DEAEMA) block copolymers have been synthesized by using poly(ethylene glycol), poly(tetrahydrofuran) (PTHF) and poly(ethylene butylenes) macroinitiators with copper mediated living radical polymerization. The use of difunctional macroinitiator gave ABA block copolymers with narrow polydispersities (PDI) and controlled number average molecular weights (Mn’s). By using DMAEMA, polymerizations proceed with excellent first order kinetics indicative of well-controlled living polymerization. Online 1H NMR monitoring has been used to investigate the polymerization of DEAEMA. The first order kinetic plots for the polymerization of DEAMA showed two different rate regimes ascribed to an induction period which is not observed for DMAEMA. ABA triblock copolymers with DMAEMA as the A blocks and PTHF or PBD as B blocks leads to amphiphilic block copolymers with Mn’s between 22 and 24 K (PDI 1.24-1.32) which form aggregates/micelles in solution. The critical aggregation concentrations, as determined by pyrene fluorimetry, are 0.07 and 0.03 g dm−1 for PTHF- and PBD-containing triblocks respectively.  相似文献   

15.
The redox properties of molybdenum, tungsten and uranium hexafluorides in acetonitrile at 298 K have been compared with other redox couples using cyclic voltammetry, and by carrying out appropriate redox reactions under carefully controlled conditions. The order of oxidizing ability established is UF6 > MoF6 > NO+1 > solvated Cu2+ ? WF6. The position of the solvated Tl3+ cation probably lies between MoF6 and Cu2+ Reactions which occur in the Cu metal/solvated Cun+ (n = 1 or 2)/WF6 system are accounted for by redox and fluoride-ion-transfer equilibria.  相似文献   

16.
Graphitic carbon nitride (g‐C3N4) has been used as photosensitizer to generate reactive oxygen species (ROS) for photodynamic therapy (PDT). However, its therapeutic efficiency was far from satisfactory. One of the major obstacles was the overexpression of glutathione (GSH) in cancer cells, which could diminish the amount of generated ROS before their arrival at the target site. Herein, we report that the integration of Cu2+ and g‐C3N4 nanosheets (Cu2+–g‐C3N4) led to enhanced light‐triggered ROS generation as well as the depletion of intracellular GSH levels. Consequently, the ROS generated under light irradiation could be consumed less by reduced GSH, and efficiency was improved. Importantly, redox‐active species Cu+–g‐C3N4 could catalyze the reduction of molecular oxygen to the superoxide anion or hydrogen peroxide to the hydroxyl radical, both of which facilitated the generation of ROS. This synergy of improved ROS generation and GSH depletion could enhance the efficiency of PDT for cancer therapy.  相似文献   

17.
A versatile family of cationic methacrylate copolymers containing varying amounts of primary and tertiary amino side groups were synthesized and investigated for in vitro gene transfection. Two different types of methacrylate copolymers, poly(2‐(dimethylamino)ethyl methacrylate)/aminoethyl methacrylate [P(DMAEMA/AEMA)] and poly(2‐(dimethylamino)ethyl methacrylate)/aminohexyl methacrylate [P(DMAEMA/AHMA)], were obtained by reversible addition‐fragmentation chain transfer (RAFT) copolymerization of dimethylaminoethyl methacrylate (DMAEMA) with N‐(tert‐butoxycarbonyl)aminoethyl methacrylate (Boc‐AEMA) or N‐(tert‐butoxycarbonyl)aminohexyl methacrylate (Boc‐AHMA) followed by acid deprotection. Gel permeation chromatography (GPC) measurements revealed that Boc‐protected methacrylate copolymers had Mn in the range of 16.1–23.0 kDa and low polydispersities of 1.12–1.26. The copolymer compositions were well controlled by monomer feed ratios. Dynamic light scattering and agarose gel electrophoresis measurements demonstrated that these PDMAEMA copolymers had better DNA condensation than PDMAEMA homopolymer. The polyplexes of these copolymers revealed low cytotoxicity at an N/P ratio of 3/1. The in vitro transfection in COS‐7 cells in serum free medium demonstrated significantly enhanced (up to 24‐fold) transfection efficiencies of PDMAEMA copolymer polyplexes as compared with PDMAEMA control. In the presence of 10% serum, P(DMAEMA/AEMA) and P(DMAEMA/AHMA) displayed a high transfection activity comparable with or better than 25 kDa PEI. These results suggest that cationic methacrylate copolymers are highly promising for development of safe and efficient nonviral gene transfer agents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2869–2877, 2010  相似文献   

18.
Conformational search of 12-thiacrown-4, 12t4, was performed using the CONFLEX method and the MMFF94S force field whereby 156 conformations were predicted. Optimized geometries of the 156 predicted conformations were calculated at the HF, B3LYP, CAM-B3LYP, M06, M06L, M062x and M06HF levels using the 6-311G** basis set. The correlation energy was recovered at the MP2 level using the same 6-311G** basis set. Optimized geometries at the MP2/6-311G** level and G3MP2 energies were calculated for some of the low energy conformations. The D 4 conformation was predicted to be the ground state conformation at all levels of theory considered in this work. Comparison between the dihedral angles of the predicted conformations indicated that for the stability of 12t4, a SCCS dihedral angle of 180° requirement is more important than a gauche CSCC dihedral angle requirement. Conformational search was performed also for the 12t4?CAg+, Bi3+, Cd2+, Cu+ and Sb3+ cation metal complexes using the CONFLEX method and the CAChe-augmented MM3 and MMFF94S force fields. Conformations with relative energies less than 10?kcal/mol at the MP2/6-31+G*//HF/6-31+G* level, with double zeta quality basis set on the metal cations, were considered for computations at the same levels as those used for free 12t4, using also the 6-311G** basis set. The cc-pVTZ-pp basis set was used for the metal cations. The predicted ground state conformations of the 12t4?CAg+, Bi3+, Cd2+, Cu+ and Sb3+ cation metal complexes are the C 4, C 4, C 4, C 2v and C 4 conformations, respectively. This is in agreement with the experimental X-ray data for the 12t4?CAg+ and Cd2+ cation metal complexes, but experimentally by X-ray, the 12t4?CBi3+ and Cu+ cation metal complexes have C s and C 4 structures, respectively.  相似文献   

19.
《中国化学快报》2020,31(5):1213-1216
The widely accepted theory concerning the electrochemical energy storage mechanism of copper hexacyanoferrate (CuHCF) for supercapacitors is that CuHCF stores charge by the reversible redox processes of Fe3+/Fe2+ couple and Cu cations are electrochemically inactive. In this work, CuHCF nanocubes (CuHCF-NC) were synthesized in the presence of potassium citrate and its electrochemical properties were tentatively studied in 1 mol/L Na2SO4 aqueous electrolyte. Good supercapacitive performance was exhibited. The combined analyses of cyclic voltammogram (CV) and X-ray photoelectron spectroscopy (XPS) disclosed that the CuHCF nanocubes underwent the redox reactions of Fe3+/Fe2+ and Cu2+/Cu+ couples to store charges. The Cu2+/Cu+ redox couple was activated due to the strong coordination interaction between the carboxylate groups of citrate ions and surface Cu cations.  相似文献   

20.
《Chemical physics letters》1987,139(5):463-469
The β-proton hyperfine coupling constants in β-substituted ethyl radicals Ḣ2-CH2-X (X = CH3, NH2, OH, F, SiH3, PH2, SH, Cl) were computed as a function of the rotational angle α about the CαCβ bond by ab initio calculations at the UHF/DZ + d level. They follow the relation aH⨿(θ,α) = A + Bcos2θ + C cosθcosα, where A and B are not significantly affected by the substituent, and C is closely related to the electronegativity of the heteroatom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号