首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[reaction: see text] The adiabatic electron affinity (EA(ad)) of the CH(3)-C[triple bond]C(*) radical [experiment = 2.718 +/- 0.008 eV] and the gas-phase basicity of the CH(3)-C[triple bond]C:(-) anion [experiment = 373.4 +/- 2 kcal/mol] have been compared with those of their fluorine derivatives. The latter are studied using theoretical methods. It is found that there are large effects on the electron affinities and gas-phase basicities as the H atoms of the alpha-CH(3) group in the propynyl system are substituted by F atoms. The predicted electron affinities are 3.31 eV (FCH(2)-C[triple bond]C(*)), 3.86 eV (F(2)CH-C[triple bond]C(*)), and 4.24 eV (F(3)C-C[triple bond]C(*)), and the predicted gas-phase basicities of the fluorocarbanion derivatives are 366.4 kcal/mol (FCH(2)-C[triple bond]C:(-)), 356.6 kcal/mol (F(2)CH-C[triple bond]C:(-)), and 349.8 kcal/mol (F(3)C-C[triple bond]C:(-)). It is concluded that the electron affinities of fluoropropynyl radicals increase and the gas-phase basicities decrease as F atoms sequentially replace H atoms of the alpha-CH(3) in the propynyl system. The propargyl radicals, lower in energy than the isomeric propynyl radicals, are also examined and their electron affinities are predicted to be 0.98 eV ((*)CH(2)-C[triple bond]CH), 1.18 eV ((*)CFH-C[triple bond]CH), 1.32 eV ((*)CF(2)-C[triple bond] CH), 1.71 eV ((*)CH(2)-C[triple bond]CF), 2.05 eV ((*)CFH-C[triple bond]CF), and 2.23 eV ((*)CF(2)-C[triple bond]CF).  相似文献   

2.
The carbon carbon coupling reaction by nucleophilic attack of (CO)(5)Cr(CN-CF=CF(2)) 1 by lithium or Grignard compounds 2a-i yields the isocyanide complexes (CO)(5)Cr(CN-CF=CF-R) 3a-i (a R = CH=CH(2), b R = CH=CF(2), c R = C≡CH, d R = C≡C-SiMe(3), e R = C≡C-Ph, f R = C≡C-C(6)F(4)OMe, g R = C≡C-C(6)H(3)(CF(3))(2), h R = C(6)F(5), i R = C(6)H(3)(CF(3))(2)) as mixtures of E and Z isomers. The dinuclear complexes 5a-c are obtained from the reaction of 1 with the dilithio or dimagnesium compound 4a-c as the Z,Z-, E,Z- and E,E-isomers, respectively. (CO)(5)Cr(CN-CF=CF-C≡C-C≡C-CF=CF-NC)Cr(CO)(5)7 is obtained as a mixture of Z,Z-, Z,E- and E,E-isomers from (CO)(5)Cr(CN-CF=CF-C≡C-H 3d by Eglington-Glaser coupling. (CO)(5)Cr(CN-CF=CF-C≡C-CF=CF-NC)Cr(CO)(5)6 and (CO)(5)Cr(CN-CF=CF-C=C-C≡C-CF=CF-NC)Cr(CO)(5)7 react with octacarbonyldicobalt forming the cluster compounds Z,Z-[{η(2)-μ(2)-(CO)(5)Cr(CN-CF=CF-C≡C-CF=CF-NC)Cr(CO)(5)}Co(2)(CO)(6)] Z,Z-8, E,Z-[{η(2)-μ(2)-(CO)(5)Cr(CN-CF=CF-C≡C-CF=CF-NC)Cr(CO)(5)}Co(2)(CO)(6)] E,Z-8 and E,E-[{η(2)-μ(2)-(CO)(5)Cr(CN-CF=CF-C≡C-CF=CF-NC)Cr(CO)(5)}Co(2)(CO)(6)] E,E-8 and Z,Z-[{η(2)-μ(2)-(CO)(5)Cr(CN-CF=CF-C≡C-C≡C-CF=CF-NC)Cr(CO)(5)}{Co(2)(CO)(6)}(2)] Z,Z-9, E,Z-[{η(2)-μ(2)-(CO)(5)Cr(CN-CF=CF-C≡C-C≡C-CF=CF-NC)Cr(CO)(5)}{Co(2)(CO)(6)}(2)] E,Z-9 and E,E-[{η(2)-μ(2)-(CO)(5)Cr(CN-CF=CF-C≡C-C≡C-CF=CF-NC)Cr(CO)(5)}{Co(2)(CO)(6)}(2)] Z,Z-9, respectively. The crystal and molecular structures of E-3d, Z-3h, Z,Z-8, E,Z-8 and Z,Z-9 were elucidated by single-crystal X-ray crystallography.  相似文献   

3.
Cationic tungsten(V) methylidynes [L4W(X)[triple bond]CH]+[B(C6F5)4]- [L = PMe3, 0.5dmpe (dmpe = Me2PCH2CH2PMe2), X = Cl, OSO2CF3] have been prepared in high yield by a one-electron oxidation of the neutral tungsten(IV) methylidynes L4W(X)[triple bond]CH with [Ph3C]+[B(C6F5)4]-. The ease and reversibility of the one-electron oxidation of L4W(X)[triple bond]CH were demonstrated by cyclic voltammetry in tetrahydrofuran (E1/2 is approximately -0.68 to -0.91 V vs Fc). The paramagnetic d1 (S = 1/2) complexes were characterized in solution by electron spin resonance (g = 2.023-2.048, quintets due to coupling to 31P) and NMR spectroscopy and Evans magnetic susceptibility measurements (mu = 2.0-2.1 muB). Single-crystal X-ray diffraction showed that the cationic methylidynes are structurally similar to the neutral precursor methylidynes. In addition, the neutral (PMe3)4W(Cl)[triple bond]CH was deprotonated with a strong base at the trimethylphosphine ligand to afford (PMe3)3(Me2PCH2)W[triple bond]CH, a tungsten(IV) methylidyne complex that features a (dimethylphosphino)methyl ligand.  相似文献   

4.
A variety of inter- and intramolecular dehydration was found in the reactions of [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)(mu-S(2))](CF(3)SO(3))(4) (1) with hydroxyl substituted alkenes and alkynes. Treatment of 1 with allyl alcohol gave a C(3)S(2) five-membered ring complex, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH(2)CH(2)CH(OCH(2)CH=CH(2))S]](CF(3)SO(3))(4) (2), via C-S bond formation after C-H bond activation and intermolecular dehydration. On the other hand, intramolecular dehydration was observed in the reaction of 1 with 3-buten-1-ol giving a C(4)S(2) six-membered ring complex, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2) [mu-SCH(2)CH=CHCH(2)S]](CF(3)SO(3))(4) (3). Complex 1 reacts with 2-propyn-1-ol or 2-butyn-1-ol to give homocoupling products, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCR=CHCH(OCH(2)C triple bond CR)S]](CF(3)SO(3))(4) (4: R = H, 5: R = CH(3)), via intermolecular dehydration. In the reaction with 2-propyn-1-ol, the intermediate complex having a hydroxyl group, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH=CHCH(OH)S]](CF(3)SO(3))(4) (6), was isolated, which further reacted with 2-propyn-1-ol and 2-butyn-1-ol to give 4 and a cross-coupling product, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH=CHCH(OCH(2)C triple bond CCH(3))S]](CF(3)SO(3))(4) (7), respectively. The reaction of 1 with diols, (HO)CHRC triple bond CCHR(OH), gave furyl complexes, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SSC=CROCR=CH]](CF(3)SO(3))(3) (8: R = H, 9: R = CH(3)) via intramolecular elimination of a H(2)O molecule and a H(+). Even though (HO)(H(3)C)(2)CC triple bond CC(CH(3))(2)(OH) does not have any propargylic C-H bond, it also reacts with 1 to give [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH(2)C(=CH(2))C(=C=C(CH(3))(2))]S](CF(3)SO(3))(4) (10). In addition, the reaction of 1 with (CH(3)O)(H(3)C)(2)CC triple bond CC(CH(3))(2)(OCH(3)) gives [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(2)][mu-S=C(C(CH(3))(2)OCH(3))C=CC(CH(3))CH(2)S][Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)]](CF(3)SO(3))(4) (11), in which one molecule of CH(3)OH is eliminated, and the S-S bond is cleaved.  相似文献   

5.
The alkynyl(vinylidene)rhodium(I) complexes trans-[Rh(C[triple bond, length as m-dash]CR)(=C=CHR)(PiPr3)2] 2, 5, 6 react with CO by migratory insertion to give stereoselectively the butenynyl compounds trans-[Rh{eta1-(Z)-C(=CHR)C[triple bond, length as m-dash]CR}(CO)(PiPr3)2](Z)-7-9, of which (Z)-7 (R=Ph) and (Z)-8 (R=tBu) rearrange upon heating or UV irradiation to the (E) isomers. Similarly, trans-[Rh{eta1-C(=CH2)C[triple bond, length as m-dash]CPh}(CO)(PiPr3)2] 12 and trans-[Rh{eta1-(Z)-C(=CHCO2Me)C[triple bond, length as m-dash]CR}(CO)(PiPr3)2](Z)-15, (Z)-16 have been prepared. At room temperature, the corresponding "non-substituted" derivative trans-[Rh{eta1-C(=CH2)C[triple bond, length as m-dash]CH}(CO)(PiPr3)2] 18 is in equilibrium with the butatrienyl isomer trans-[Rh(eta1-CH=]C=C=CH2)(CO)(PiPr3)2] 19 that rearranges photochemically to the alkynyl complex trans-[Rh(C[triple bond, length as m-dash]CCH=CH2)(CO)(PiPr3)2] 20. Reactions of (Z)-7, (E)-7, (Z)-8 and (E)-8 with carboxylic acids R'CO2H (R'=CH3, CF3) yield either the butenyne (Z)- and/or (E)-RC[triple bond, length as m-dash]CCH=CHR or a mixture of the butenyne and the isomeric butatriene, the ratio of which depends on both R and R'. Treatment of 2 (R=Ph) with HCl at -40 degrees C affords five-coordinate [RhCl(C[triple bond, length as m-dash]CPh){(Z)-CH=CHPh}(PiPr3)2] 23, which at room temperature reacts by C-C coupling to give trans-[RhCl{eta2-(Z)-PhC[triple bond, length as m-dash]CCH=CHPh}(PiPr3)2](Z)-21. The related compound trans-[RhCl(eta2-HC[triple bond, length as m-dash]CCH=CH2)(PiPr3)2] 27, prepared from trans-[Rh(C[triple bond, length as m-dash]CH)(=C=CH2)(PiPr3)2] 17 and HCl, rearranges to the vinylvinylidene isomer trans-[RhCl(=C=CHCH=CH2)(PiPr3)2] 28. While stepwise reaction of 2with CF3CO2H yields, via alkynyl(vinyl)rhodium(III) intermediates (Z)-29 and (E)-29, the alkyne complexes trans-[Rh(kappa1-O2CCF3)(eta2-PhC[triple bond, length as m-dash]CCH=CHPh)(PiPr3)2](Z)-30 and (E)-30, from 2 and CH3CO2H the acetato derivative [Rh(kappa2-O2CCH3)(PiPr3)2] 33 and (Z)-PhC[triple bond, length as m-dash]CCH=]CHPh are obtained. From 6 (R=CO2Me) and HCl or HC[triple bond, length as m-dash]CCO2Me the chelate complexes [RhX(C[triple bond, length as m-dash]CCO2Me){kappa2(C,O)-CH=CHC(OMe)=O}(PiPr3)2] 34 (X=Cl) and 35 (X=C[triple bond, length as m-dash]CCO2Me) have been prepared. In contrast to the reactions of [Rh(kappa2-O2CCH3)(C[triple bond, length as m-dash]CE)(CH=CHE)(PiPr3)2] 37(E=CO2Me) with chloride sources which give, via intramolecular C-C coupling, four-coordinate trans-[RhCl{eta2-(E)-EC[triple bond, length as m-dash]CCH=CHE}(PiPr3)2](E)-36, treatment of 37with HC[triple bond, length as m-dash]CE affords, via insertion of the alkyne into the rhodium-vinyl bond, six-coordinate [Rh(kappa2-O2CCH3)(C[triple bond, length as m-dash]CE){eta1-(E,E)-C(=CHE)CH=CHE}(PiPr3)2] 38. The latter reacts with MgCl2 to yield trans-[RhCl{eta2-(E,E)-EC[triple bond, length as m-dash]CC(=CHE)CH=CHE}(PiPr3)2] 39, which, in the presence of CO, generates the substituted hexadienyne (E,E)-EC[triple bond, length as m-dash]CC(=CHE)CH=CHE 40.  相似文献   

6.
The reactions of the ethynyl radical (C(2)H) with propyne and allene are studied at room temperature using an apparatus that combines the tunability of the vacuum ultraviolet radiation of the Advanced Light Source at Lawrence Berkeley National Laboratory with time-resolved mass spectrometry. The C(2)H radical is prepared by 193-nm photolysis of CF(3)CCH and the mass spectrum of the reacting mixture is monitored in time using synchrotron-photoionization with a dual-sector mass spectrometer. Analysis using photoionization efficiency curves allows the isomer-specific detection of individual polyynes of chemical formula C(5)H(4) produced by both reactions. The product branching ratios are estimated for each isomer. The reaction of propyne with ethynyl gives 50-70% diacetylene (H-C[triple bond]C-C[triple bond]C-H) and 50-30% C(5)H(4), with a C(5)H(4)-isomer distribution of 15-20% ethynylallene (CH(2)=C=CH-C[triple bond]CH) and 85-80% methyldiacetylene (CH(3)-C[triple bond]C-C[triple bond]CH). The reaction of allene with ethynyl gives 35-45% ethynylallene, 20-25% methyldiacetylene and 45-30% 1,4-pentadiyne (HC[triple bond]C-CH(2)-C[triple bond]CH). Diacetylene is most likely not produced by this reaction; an upper limit of 30% on the branching fraction to diacetylene can be derived from the present experiment. The mechanisms of polyynes formation by these reactions as well as the implications for Titan's atmospheric chemistry are discussed.  相似文献   

7.
Reactions of LAl with ethyne, mono- and disubstituted alkynes, and diyne to aluminacyclopropene LAl[eta2-C2(R1)(R2)] ((L = HC[(CMe)(NAr)]2, Ar = 2,6-iPr2C6H3); R1 = R2 = H, (1); R1 = H, R2 = Ph, (2); R1 = R2 = Me, (3); R1 = SiMe3, R2 = C[triple bond]CSiMe3, (4)) are reported. Compounds 1 and 2 were obtained in equimolar quantities of the starting materials at low temperature. The amount of C2H2 was controlled by removing an excess of C2H2 in the range from -78 to -50 degrees C. Compound 4 can be alternatively prepared by the substitution reaction of LAl[eta2-C2(SiMe3)2] with Me3SiC[triple bond]CC[triple bond]CSiMe3 or by the reductive coupling reaction of LAlI2 with potassium in the presence of Me3SiC[triple bond]CC[triple bond]CSiMe3. The reaction of LAl with excess C2H2 and PhC[triple bond]CH (<1:2) afforded the respective alkenylalkynylaluminum compounds LAl(CH=CH2)(C[triple bond]CH) (5) and LAl(CH=CHPh)(C[triple bond]CPh) (6). The reaction of LAl(eta2-C2Ph2) with C2H2 and PhC[triple bond]CH yielded LAl(CPh=CHPh)(C[triple bond]CH) (7) and LAl(CPh=CHPh)(C[triple bond]CPh) (8), respectively. Rationally, the formation of 5 (or 6) may proceed through the corresponding precursor 1 (or 2). The theoretical studies based on DFT calculations show that an interaction between the Al(I) center and the C[triple bond]C unit needs almost no activation energy. Within the AlC2 ring the computational Al-C bond order of ca. 1 suggests an Al-C sigma bond and therefore less pi electron delocalization over the AlC2 ring. The computed Al-eta2-C2 bond dissociation energies (155-82.6 kJ/mol) indicate a remarkable reactivity of aluminacyclopropene species. Finally, the 1H NMR spectroscopy monitored reaction of LAl(eta2-C2Ph2) and PhC[triple bond]CH in toluene-d8 may reveal an acetylenic hydrogen migration process.  相似文献   

8.
Partially modified retro- (PMR) and retro-inverso (PMRI) psi[NHCH(CF(3))]Gly peptides, a conceptually new class of peptidomimetics, have been synthesized in wide structural diversity and variable length by aza-Michael reaction of enantiomerically pure alpha-amino esters and peptides with enantiomerically and geometrically pure N-4,4,4-trifluorocrotonoyl-oxazolidin-2-ones. The factors underlying the observed moderate to good diastereocontrol have been investigated. The conformations of model PMR-psi[NHCH(CF(3))]Gly tripeptides have been studied in solution by (1)H NMR spectroscopy supported by MD calculations, as well as in the solid-state by X-ray diffraction. Remarkable stability of turn-like conformations, comparable to that of parent malonyl-based retropeptides, was evidenced, as a likely consequence of two main factors: 1) severe torsional restrictions about sp(3) bonds in the [CO-CH(2)-CH(CF(3))-NH-CH(R)-CO] module, which is biased by the stereoelectronically demanding CF(3) group and the R side chain; 2) formation of nine-membered intramolecularly hydrogen-bonded rings, which have been clearly detected both in CHCl(3) solution and in some crystal structures. The former factor seems to be more important, as turn-like conformations were found in the solid-state even in the absence of intramolecular hydrogen bonding. The relative configuration of the -C*H(CF(3))NHC*H(R)- stereogenic centers has a major effect on the stability of the turn-like conformation, which seems to require a syn stereochemistry. X-ray diffraction and ab initio computational studies showed that the [-CH(CF(3))NH-] group can be seen as a sort of hybrid between a peptide bond mimic and a proteolytic transition state analogue, as it combines some of the properties of a peptidyl -CONH- group (low NH basicity, CH(CF(3))-NH-CH backbone angle close to 120 degrees, C-CF(3) bond substantially isopolar with the C=O) with some others of the tetrahedral intermediate [-C(OX)(O(-))NH-] involved in the protease-mediated hydrolysis reaction of a peptide bond (high electron density on the CF(3) group, tetrahedral backbone carbon).  相似文献   

9.
(ButO)3Mo triple bond N and W2(OBut)6(M triple bond M) react in hydrocarbons to form Mo2(OBut)6(M triple bond M) and (ButO)3W triple bond N via the reactive intermediate MoW(OBut)6(M triple bond M). (ButO)3W triple bond N and CH3C triple bond N15 react in tetrahydrofuran (THF) at room temperature to give an equilibrium mixture involving (ButO)3W triple bond N15 and CH3C triple bond N. The (ButO)3W triple bond N compound is similarly shown to act as a catalyst for N15-atom scrambling between MeC13 triple bond N15 and PhC triple bond N to give a mixture of MeC13 triple bond N and PhC triple bond N15. From studies of degenerate scrambling of N atoms involving (ButO)3W triple bond N and MeC13 triple bond N in THF-d8 by 13C(1H) NMR spectroscopy, the reaction was found to be first order in acetonitrile and the activation parameters were estimated to be DeltaH = 13.4(7) kcal/mol and DeltaS = -32(2) eu. A similar reaction is observed for (ButO)3Mo triple bond N and CH3C triple bond N15 upon heating in THF-d8. The reaction is suppressed in pyridine solutions and not observed for the dimeric [(ButMe2SiO)3W triple bond N]2. The reaction pathway has been investigated by calculations employing density functional theory on the model compounds (MeO)3M triple bond N and CH3C triple bond N where M = Mo and W. The transition state was found to involve a product of the 2 + 2 cycloaddition of M triple bond N and C triple bond N, a planar metalladiazacyclobutadiene. This resembles the pathway calculated for alkyne metathesis involving (MeO)3W triple bond CMe, which modeled the metathesis of (ButO)3W triple bond CBut. The calculations also predict that the energy of the transition state is notably higher for M = Mo relative to M = W.  相似文献   

10.
The salt [CF3C[triple bond]CXe] [BF4] was prepared as neat compound by the reaction of the hitherto unknown alkynyldifluoroborane CF3C[triple bond]CBF2 with XeF2 in 1,1,1,3,3-pentafluoropropane (PFP) at -45 degrees C in 59% yield. [CF3C[triple bond]CXe] [BF4] was unambiguously characterised by multinuclear NMR spectroscopy in anhydrous HF (aHF) solution.  相似文献   

11.
Molecules containing a C-C triple bond, such as HC[triple bond]CH, FC[triple bond]CF, and the C[triple bond]CH radical, are allowed to interact with a partner molecule of H2O, NH3, or HF. Quantum chemical calculations show that these C[triple bond]CH...X H-bonded complexes are bound by up to 4 kcal x mol(-1). More importantly, they can rearrange in such a way that the partner molecule adds to the triple bond so as to form a double C=C bond. Whereas this process is strongly exoergic, there is a high-energy barrier to this rearrangement process. On the other hand, when a second water molecule is added to the complex, it can shuttle protons from the donor part of the complex to the acceptor, and thereby greatly reduce the rearrangement energy barrier. In the case of CCH + 2H2O, this barrier is computed to be less than 4 kcal x mol(-1).  相似文献   

12.
The symmetric d(5) trans-bis-alkynyl complexes [Mn(dmpe)(2)(C triple bond CSiR(3))(2)] (R = Me, 1 a; Et, 1 b; Ph, 1 c) (dmpe = 1,2-bis(dimethylphosphino)ethane) have been prepared by the reaction of [Mn(dmpe)(2)Br(2)] with two equivalents of the corresponding acetylide LiC triple bond CSiR(3). The reactions of species 1 with [Cp(2)Fe][PF(6)] yield the corresponding d(4) complexes [Mn(dmpe)(2)(C triple bond CSiR(3))(2)][PF(6)] (R = Me, 2 a; Et, 2 b; Ph, 2 c). These complexes react with NBu(4)F (TBAF) at -10 degrees C to give the desilylated parent acetylide compound [Mn(dmpe)(2)(C triple bond CH)(2)][PF(6)] (6), which is stable only in solution at below 0 degrees C. The asymmetrically substituted trans-bis-alkynyl complexes [Mn(dmpe)(2)(C triple bond CSiR(3))(C triple bond CH)][PF(6)] (R = Me, 7 a; Et, 7 b) related to 6 have been prepared by the reaction of the vinylidene compounds [Mn(dmpe)(2)(C triple bond CSiR(3))(C=CH(2))] (R = Me, 5 a; Et, 5 b) with two equivalents of [Cp(2)Fe][PF(6)] and one equivalent of quinuclidine. The conversion of [Mn(C(5)H(4)Me)(dmpe)I] with Me(3)SiC triple bond CSnMe(3) and dmpe afforded the trans-iodide-alkynyl d(5) complex [Mn(dmpe)(2)(C triple bond CSiMe(3))I] (9). Complex 9 proved to be unstable with regard to ligand disproportionation reactions and could therefore not be oxidized to a unique Mn(III) product, which prevented its further use in acetylide coupling reactions. Compounds 2 react at room temperature with one equivalent of TBAF to form the mixed-valent species [[Mn(dmpe)(2)(C triple bond CH)](2)(micro-C(4))][PF(6)] (11) by C-C coupling of [Mn(dmpe)(2)(C triple bond CH)(C triple bond C*)] radicals generated by deprotonation of 6. In a similar way, the mixed-valent complex [[Mn(dmpe)(2)(C triple bond CSiMe(3))](2)(micro-C(4))][PF(6)] [12](+) is obtained by the reaction of 7 a with one equivalent of DBU (1,8-diazabicyclo[5.4.0]undec-7-ene). The relatively long-lived radical intermediate [Mn(dmpe)(2)(C triple bond CH)(C triple bond C*)] could be trapped as the Mn(I) complex [Mn(dmpe)(2)(C triple bond CH)(triple bond C-CO(2))] (14) by addition of an excess of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) to the reaction mixtures of species 2 and TBAF. The neutral dinuclear Mn(II)/Mn(II) compounds [[Mn(dmpe)(2)(C triple bond CR(3))](2)(micro-C(4))] (R = H, 11; R = SiMe(3), 12) are produced by the reduction of [11](+) and [12](+), respectively, with [FeCp(C(6)Me(6))]. [11](+) and [12](+) can also be oxidized with [Cp(2)Fe][PF(6)] to produce the dicationic Mn(III)/Mn(III) species [[Mn(dmpe)(2)(C triple bond CR(3))](2)(micro-C(4))][PF(6)](2) (R = H, [11](2+); R = SiMe(3), [12](2+)). Both redox processes are fully reversible. The dinuclear compounds have been characterized by NMR, IR, UV/Vis, and Raman spectroscopies, CV, and magnetic susceptibilities, as well as elemental analyses. X-ray diffraction studies have been performed on complexes 4 b, 7 b, 9, [12](+), [12](2+), and 14.  相似文献   

13.
The reaction of [Ta(=CHtBu)(CH2tBu)3] or [Cp*Ta(CH3)4] with a silica partially dehydroxylated at 700 degrees C gives the corresponding monosiloxy surface complexes [([triple bond]SiO)Ta(=CHtBu)(CH2tBu)2] and [([triple bond]SiO)Ta(CH3)3Cp*] by eliminating a sigma-bonded ligand as the corresponding alkane (H-CH2tBu or H-CH3). EXAFS data show that an adjacent siloxane bridge of the surface plays the role of an extra surface ligand, which most likely stabilizes these complexes as in [([triple bond]SiO)Ta(=CHtBu)(CH2tBu)2([triple bond]SiOSi[triple bond])] (1a') and [([triple bond]SiO)Ta(CH3)3Cp*([triple bond]SiOSi[triple bond])] (2a'). In the case of [(SiO)Ta(=CHtBu)(CH2tBu)2([triple bond]SiOSi[triple bond])], the structure is further stabilized by an additional interaction: a C-H agostic bond as evidenced by the small J coupling constant for the carbenic C-H (JC-H = 80 Hz), which was measured by J-resolved 2D solid-state NMR spectroscopy. The product selectivity in propane metathesis in the presence of [([triple bond]SiO)Ta(=CHtBu)(CH2tBu)2([triple bond]SiOSi[triple bond])] (1a') as a catalyst precursor and the inactivity of the surface complex [([triple bond]SiO)Ta(CH3)3Cp*([triple bond]SiOSi[triple bond])] (2a') show that the active site is required to be highly electrophilic and probably involves a metallacyclobutane intermediate.  相似文献   

14.
FTIR-smog chamber techniques were used to study the products of the Cl atom and OH radical initiated oxidation of CF3CH=CH2 in 700 Torr of N2/O2, diluent at 296 K. The Cl atom initiated oxidation of CF3CH=CH2 in 700 Torr of air in the absence of NOx gives CF3C(O)CH2Cl and CF3CHO in yields of 70+/-5% and 6.2+/-0.5%, respectively. Reaction with Cl atoms proceeds via addition to the >C=C< double bond (74+/-4% to the terminal and 26+/-4% to the central carbon atom) and leads to the formation of CF3CH(O)CH2Cl and CF3CHClCH2O radicals. Reaction with O2 and decomposition via C-C bond scission are competing loss mechanisms for CF3CH(O)CH2Cl radicals, kO2/kdiss=(3.8+/-1.8)x10(-18) cm3 molecule-1. The atmospheric fate of CF3CHClCH2O radicals is reaction with O2 to give CF3CHClCHO. The OH radical initiated oxidation of CxF2x+1CH=CH2 (x=1 and 4) in 700 Torr of air in the presence of NOx gives CxF2x+1CHO in a yield of 88+/-9%. Reaction with OH radicals proceeds via addition to the >C=C< double bond leading to the formation of CxF2x+1C(O)HCH2OH and CxF2x+1CHOHCH2O radicals. Decomposition via C-C bond scission is the sole fate of CxF2x+1CH(O)CH2OH and CxF2x+1CH(OH)CH2O radicals. As part of this work a rate constant of k(Cl+CF3C(O)CH2Cl)=(5.63+/-0.66)x10(-14) cm3 molecule-1 s-1 was determined. The results are discussed with respect to previous literature data and the possibility that the atmospheric oxidation of CxF2x+1CH=CH2 contributes to the observed burden of perfluorocarboxylic acids, CxF2x+1COOH, in remote locations.  相似文献   

15.
Yam M  Tsang CW  Gates DP 《Inorganic chemistry》2004,43(12):3719-3723
The secondary vinylphosphines Ar(F)P(H)C(R)[double bond]CH(2) [2a, Ar(F) = 2,6-(CF(3))(2)C(6)H(3), R = CH(3); 2b, Ar(F) = 2,6-(CF(3))(2)C(6)H(3), R = C(6)H(5); 2c, Ar(F) = 2,4,6-(CF(3))(3)C(6)H(2), R = CH(3)] were prepared by treating the corresponding dichlorophosphine Ar(F)PCl(2) (1) with H(2)C[double bond]C(R)MgBr. In the presence of catalytic base (DBU or DABCO) the vinylphosphines (2a-c) undergo quantitative 1,3-hydrogen migration over 3 d to give stable and isolable phosphaalkenes Ar(F)P=C(R)CH(3) (3a, Ar(F) = 2,6-(CF(3))(2)C(6)H(3), R = CH(3); 3b, Ar(F) = 2,6-(CF(3))(2)C(6)H(3), R = C(6)H(5); 3c, Ar(F) = 2,4,6-(CF(3))(3)C(6)H(2), R = CH(3)). Under analogous conditions, only 90% conversion is observed in the base-catalyzed rearrangement of MesP(H)C(CH(3))[double bond]CH(2) to MesP[double bond]C(CH(3))(2). Presumably, the increase in acidity of the P-H group when electron-withdrawing groups are employed (i.e. 2a-c) favors quantitative rearrangement to the phosphaalkene tautomer (3a-c). Thus, the double-bond migration reaction is a convenient and practical method of preparing new phosphaalkenes with C-methyl substituents.  相似文献   

16.
Berreau LM  Chen J  Woo LK 《Inorganic chemistry》2005,44(21):7304-7306
The imido(meso-tetra-p-tolylporphyrinato)molybdenum(IV) complexes, (TTP)Mo=NR, where R = C6H5 (1a), p-CH3C6H4 (1b), 2,4,6-(CH3)3C6H2 (1c), and 2,6-(i-Pr)2C6H4 (1d), can be prepared by the reaction of (TTP)MoCl2 with 2 equiv of LiNHR in toluene. Upon treatment of the imido complexes with pyridine derivatives, NC5H4-p-X (X = CH3, CH(CH3)2, C[triple bond]N), new six-coordinate complexes, (TTP)Mo=NR.NC5H4-p-X, were observed. The reaction between the molybdenum imido complexes, (TTP)Mo=NC6H5 or (TTP)Mo=NC6H4CH3, and (TTP)Ti(eta2-PhC[triple bond]CPh) resulted in complete imido group transfer and two-electron redox of the metal centers to give (TTP)Mo(eta2-PhC[triple bond]CPh) and (TTP)Ti=NC6H5 or (TTP)Ti=NC6H4CH3.  相似文献   

17.
The neopentylidene-neopentyl complex (PNP)Ti=CH(t)Bu(CH2(t)Bu) (2; PNP(-) = N[2-P(CHMe2)(2-)4-methylphenyl]2), prepared from the precursor (PNP)Ti[triple bond]CH(t)Bu(OTf) (1) and LiCH2(t)Bu, extrudes neopentane in neat benzene under mild conditions (25 degrees C) to generate the transient titanium alkylidyne, (PNP)Ti[triple bond]C(t)Bu (A), which subsequently undergoes 1,2-CH bond addition of benzene across the Ti[triple bond]C linkage to generate (PNP)Ti=CH(t)Bu(C6H5) (3). Kinetic, mechanistic, and theoretical studies suggest the C-H activation process to obey pseudo-first-order in titanium, the alpha-hydrogen abstraction to be the rate-determining step (KIE for 2/2-d(3) conversion to 3/3-d(3) = 3.9(5) at 40 degrees C) with activation parameters DeltaH = 24(7) kcal/mol and DeltaS = -2(3) cal/mol.K, and the post-rate-determining step to be C-H bond activation of benzene (primary KIE = 1.03(7) at 25 degrees C for the intermolecular C-H activation reaction in C6H6 vs C6D6). A KIE of 1.33(3) at 25 degrees C arose when the intramolecular C-H activation reaction was monitored with 1,3,5-C6H3D3. For the activation of aromatic C-H bonds, however, the formation of the sigma-complex becomes rate-determining via a hypothetical intermediate (PNP)Ti[triple bond]C(t)Bu(C6H5), and C-H bond rupture is promoted in a heterolytic fashion by applying standard Lewis acid/base chemistry. Thermolysis of 3 in C6D6 at 95 degrees C over 48 h generates 3-d(6), thereby implying that 3 can slowly equilibrate with A under elevated temperatures with k = 1.2(2) x 10-5 s(-1), and with activation parameters DeltaH = 31(16) kcal/mol and DeltaS = 3(9) cal/mol x K. At 95 degrees C for one week, the EIE for the 2 --> 3 reaction in 1,3,5-C6H3D3 was found to be 1.36(7). When 1 is alkylated with LiCH2SiMe3 and KCH2Ph, the complexes (PNP)Ti=CHtBu(CH2SiMe3) (4) and (PNP)Ti=CHtBu(CH2Ph) (6) are formed, respectively, along with their corresponding tautomers (PNP)Ti=CHSiMe3(CH2tBu) (5) and (PNP)Ti=CHPh(CH2tBu) (7). By means of similar alkylations of (PNP)Ti=CHSiMe3(OTf) (8), the degenerate complex (PNP)Ti=CHSiMe3(CH2SiMe3) (9) or the non-degenerate alkylidene-alkyl complex (PNP)Ti=CHPh(CH2SiMe3) (11) can also be obtained, the latter of which results from a tautomerization process. Compounds 4/5 and 9, or 6/7 and 11, also activate benzene to afford (PNP)Ti=CHR(C6H5) (R = SiMe3 (10), Ph (12)). Substrates such as FC6H5, 1,2-F2C6H4, and 1,4-F2C6H4 react at the aryl C-H bond with intermediate A, in some cases regioselectively, to form the neopentylidene-aryl derivatives (PNP)Ti=CHtBu(aryl). Intermediate A can also perform stepwise alkylidene-alkyl metatheses with 1,3,5-Me3C6H3, SiMe4, 1,2-bis(trimethylsilyl)alkyne, and bis(trimethylsilyl)ether to afford the titanium alkylidene-alkyls (PNP)Ti=CHR(R') (R = 3,5-Me2C6H2, R' = CH2-3,5-Me2C6H2; R = SiMe3, R' = CH2SiMe3; R = SiMe2CCSiMe3, R' = CH2SiMe2CCSiMe3; R = SiMe2OSiMe3, R' = CH2SiMe2OSiMe3).  相似文献   

18.
Dimerization of the alkynylcarbene complex Cp(CO)(2)Re=C(Tol)C(triple bond)CCH(3) (8) occurs at 100 degrees C to give a 1.2:1 mixture of enediyne complexes [Cp(CO)(2)Re](2)[eta(2),eta(2)-TolC(triple bond)CC(CH(3))=C(CH(3))C(triple bond)CTol] (10-Eand 10-Z), showing no intrinsic bias toward trans-enediyne complexes. The cyclopropyl-substituted alkynylcarbene complex Cp(CO)(2)Re=C(Tol)C(triple bond)CC(3)H(5) (11) dimerizes at 120 degrees C to give a 5:1 ratio of enediyne complexes [Cp(CO)(2)Re](2)[eta(2),eta(2)-TolC(triple bond)C(C(3)H(5))C=C(C(3)H(5))C(triple bond)CTol] (12-E and 12-Z); no ring expansion product was observed. This suggests that if intermediate A formed by a [1,1.5] Re shift and having carbene character at the remote alkynyl carbon is involved, then interaction of the neighboring Re with the carbene center greatly diminishes the carbene character as compared with that of free cyclopropyl carbenes. The tethered bis-(alkynylcarbene) complex Cp(CO)(2)Re=C(Tol)C(triple bond)CCH(2)CH(2)CH(2)C(triple bond)CC(Tol)= Re(CO)(2)Cp (13) dimerizes rapidly at 12 degrees C to give the cyclic cis-enediyne complex [Cp(CO)(2)Re](2)[eta(2),eta(2)-TolC(triple bond)CC(CH(2)CH(2)CH(2))=CC(triple bond)CTol] (15). Attempted synthesis of the 1,8-disubstituted naphthalene derivative 1,8-[Cp(CO)(2)Re=C(Tol)C(triple bond)C](2)C(10)H(6) (16), in which the alkynylcarbene units are constrained to a parallel geometry, leads to dimerization to [Cp(CO)(2)Re](2)(eta(2),eta(2)-1,2-(tolylethynyl)acenaphthylene] (17). The very rapid dimerizations of both 13 and 16 provide compelling evidence against mechanisms involving cyclopropene intermediates. A mechanism is proposed which involves rate-determining addition of the carbene center of A to the remote alkynyl carbon of a second alkynylcarbene complex to generate vinyl carbene intermediate C, and rearrangement of C to the enediyne complex by a [1,1.5] Re shift.  相似文献   

19.
A family of group 6 transition metal complexes M(C(5)R(5))(CO)(2)(CF) [M = Cr, Mo, W; R = H, Me] with terminal fluoromethylidyne ligands have been synthesized through the reduction of the corresponding trifluoromethyl precursors with potassium graphite or magnesium graphite. They have been characterized spectroscopically and in some cases crystallographically, although the structures show disorder between the CO and CF ligands. The M[triple bond]CF subunit reacts as a triple bond to form cluster complexes containing μ(3)-CF ligands on reaction with Co(2)(CO)(8). Computational (DFT/NBO/NRT) studies on M(C(5)H(5))(CO)(2)(CF) [M = Cr, Mo, W] and the corresponding cationic fragments M(CO)(2)(XY)(+) illustrate significant differences in the metal-ligand bonding between CF and its isoelectronic analogue NO, as well as with its hydrocarbon analogue CH.  相似文献   

20.
trans-[(H(2)NCH(2)CH(2)C triple bond N)(dppe)(2)Ru(C triple bond C)(6)Ru(dppe)(2)(N triple bond CCH(2)CH(2)NH(2))][PF(6)](2), 2[PF(6)](2), a derivative of trans-[Cl(dppe)(2)Ru(C triple bond C)(6)Ru(dppe)(2)Cl] functionalized for binding to a silicon substrate, has been prepared and characterized spectroscopically, electrochemically, and with a solid state, single-crystal structure determination. Covalent binding via reaction of one amine group to a boron-doped, smooth Si-Cl substrate is verified by XPS measurements and surface electrochemistry. Vertical orientation is demonstrated by film thickness measurements. Synthesis of the 2[PF(6)](3) mixed-valence complex on the surface is established by electrochemical techniques. Measurement of the ac capacitance of the film at 1 MHz as a function of voltage across the film with a pulse-counter pulse technique demonstrates controlled electric field generation of the two stable mixed-valence forms differing in the spatial location of one electron, that is, switching. As compared to [trans-Ru(dppm)(2)(C triple bond CFc)(NCCH(2)CH(2)NH(2))][PF(6)][Cl], 1[PF(6)][Cl], the magnitude of the capacitance signal per complex observed on switching is shown to increase with increasing distance between the metal centers. Additional experiments on 1[X][Cl] show that the potential for switching 1[X][Cl] increases in the order [X](-) = [SO(3)CF(3)](-) < [PF(6)](-) < [Cl](-). A simple electrostatic model suggests that the smaller is the counterion, the greater is the perturbation of the metal sites and the larger is the barrier for switching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号