首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Normal hexyl radicals generated from the decomposition of n-hexyl iodide have been decomposed in single pulse shock tube experiments. All the products arising from the decomposition of 1-hexyl (the initial reactant) and 2-hexyl and 3-hexyl (isomerization products) have been detected in the temperature range 890-1020 K and 1.5-5 bar pressures. We find that
  相似文献   

2.
The thermal cracking patterns from the decomposition and isomerization of octyl-1 radicals have been determined from the pyrolysis of n-octyl iodide in single pulse shock tube experiments at temperatures in the 850-1000 K range and pressures near 2 bar. Rate constants for the six beta bond scission and five of the six isomerization processes have been derived over all combustion conditions [0.1-100 bar, 700-1900 K]. Comparisons are made with previous studies on the decomposition of other primary radicals. Results are consistent with similar types of reactions having equal rate constants. The larger size of the octyl radicals makes contributions from secondary to secondary radical isomerization increasingly important. The results confirm that the 1-3 H-transfer process (involving a seven member cyclic transition state) have rate constants that are within a factor of 2 of those for the 1-4 process (six member cyclic transition state) It appears that rate constants for 1-2 H-transfer isomerization, involving an eight member cyclic transition state is unimportant in comparison to contributions from other isomerization processes. The strain energy does not appear to play an important role for these larger transition states. The implications of these results to larger fuel radicals will be discussed.  相似文献   

3.
4.
采用傅里叶红外光谱测试(FTIR)、热重法(TG)和微商热重法(DTG)研究了GAP和GAP处理硼的样品(GAP/B)在空气和氮气两种环境中的热分解。结果表明:GAP在约170 ℃开始发生叠氮基消除反应,250 ℃左右结束,GAP骨架的解聚反应延后了40 ℃左右;硼(B)改变了GAP的热分解过程,GAP/B在55~70 ℃开始分解,明显提前于GAP本身,而且,叠氮基的消除反应与GAP骨架的解聚反应几乎同时发生。基于Kissinger热分析数据处理方法,对GAP和GAP/B两种体系在叠氮基消除阶段的热分解动力学进行了研究,结果发现在空气环境中,两种体系的活化能E的数值均较低,较易于发生反应,这是由于GAP与空气中的氧发生有氧热解所致。  相似文献   

5.
Gelatin is a mixture of soluble proteins prepared by partial hydrolysis of native collagen. Gelatin can be enzymatically hydrolyzed to produce bioactive hydrolysates. However, the preparation of gelatin peptide with expected activity is usually a time-consuming process. The production efficiency of gelatin hydrolysates needs to be improved. In present work, effect of ultrasonic pretreatment on kinetic parameters of gelatin hydrolysis by collagenase was investigated based on an established kinetic model. With ultrasonic pretreatment, reaction rate constant and enzyme inactivation constant were increased by 27.5% and 27.8%, respectively. Meanwhile, hydrolysis activation energy and enzyme inactivation energy were reduced by 36.3% and 43.0%, respectively. In order to explore its possible mechanism, influence of sonication on structural properties of gelatin was determined using atomic force microscopy, particle size analyzer, fluorescence spectroscopy, protein solubility test and Fourier transform infrared spectroscopy. Moreover, hydrogen peroxide was used as a positive control for potential sonochemical effect. It was found that reduction of gelatin particle size was mainly caused by physical effect of ultrasound. Increased solubility and variation in β-sheet and random coil elements of gelatin were due to sonochemical effect. Both physical and chemical effects of sonication contributed to the change in α-helix and β-turn structures. The current results suggest that ultrasound can be potentially applied to stimulate the production efficiency of gelatin peptides, mainly due to its effects on modification of protein structures.  相似文献   

6.
Adomian渐近分解法及其在力学问题中的应用   总被引:2,自引:0,他引:2  
那仁满都拉 《大学物理》2003,22(8):11-12,16
介绍了Adomian渐近分解法,并用此方法研究了几个力学系统的渐近行为,从而指出该方法是研究力学系统渐近行为的一种直接有效的新方法。  相似文献   

7.
Atomic H and Cl were monitored by time-resolved resonance spectroscopy in the vacuum ultraviolet, following 193 nm laser flash photolysis of C6H5Cl and mixtures with NH3, over 300-1020 K and with Ar bath gas pressures from 30 to 440 mbar. Below 550 K simple exponential decays of [H] were observed, and attributed to addition to form chlorocyclohexadienyl radicals. This addition was reversible over 550-630 K and the equilibrium constant was determined by a third law approach. The addition rate constant can be summarized as (1.51 ± 0.11) × 10−11exp((−1397 ± 29)/T) cm3 molecule−1 s−1 (300-630 K, 1σ uncertainties), and the C-H bond dissociation enthalpy in 1-chlorocyclohexadienyl was determined to be 108.1 ± 3.3 kJ mol−1 at 298 K. At higher temperatures the photolysis of chlorobenzene yielded H atoms, which is attributed to the reaction of phenyl with chlorobenzene with a rate constant of (4.5 ± 1.8) × 10−10exp((−4694 ± 355)/T) cm3  molecule−1 s−1 over 810-1020 K. These and other reaction pathways are discussed in terms of information about the potential energy surface obtained via B3LYP/6-311G(2d,d,p) density functional theory.  相似文献   

8.
徐京城  赵纪军 《物理学报》2009,58(6):4144-4149
采用基于密度泛函理论的第一性原理分子动力学方法对液态硝基甲烷的热分解行为进行了模拟,结合各产物布居数随时间的演化,讨论了热分解初期可能发生的3种反应,即分子内/分子间的质子迁移反应和C—N键的断裂.在长时间(30 ps)的模拟过程中,H2O是主要产物.研究了液态硝基甲烷在不同密度(压力)条件下热分解的动力学行为.发现不同密度(压力)条件下液态硝基甲烷热分解呈现明显不同的变化趋势,并给出了解释. 关键词: 硝基甲烷 分子动力学 热分解 压力效应  相似文献   

9.
Studies of the reaction with NO in an argon or a nitrogen matrix at 4° or 14°K of H and D atoms produced either photolytically or in a microwave discharge have confirmed the previous identification of the ground-state NO stretching fundamental of HNO and of DNO but have dictated a reassignment of the deformation fundamental of these two species. An absorption at 1153 cm?1 has been assigned as the deformation fundamental of DNO, and evidence is presented suggesting that the deformation fundamental of HNO lies very close to 1500 cm?1. The assignment of an absorption at 2717 cm?1 as the NH stretching fundamental of HNO and of an absorption at 2043 cm?1 as the corresponding fundamental of DNO is consistent with the previous report of an exceptionally long NH bond for ground-state HNO. Detailed isotopic studies support this revised vibrational assignment, which is shown to be consistent with previous gas-phase studies. The force constants and thermodynamic properties of ground-state HNO derived from the matrix data are presented.  相似文献   

10.
季杰  姚玉芹  虞静  刘玉清 《中国物理》2007,16(2):296-302
A new approach to formulizing a new high-order matrix spectral problem from a normal 2× 2 matrix modified Korteweg--de Vries (mKdV) spectral problem is presented. It is found that the isospectral evolution equation hierarchy of this new higher-order matrix spectral problem turns out to be the well-known mKdV equation hierarchy. By using the binary nonlinearization method, a new integrable decomposition of the mKdV equation is obtained in the sense of Liouville. The proof of the integrability shows that r-matrix structure is very interesting.  相似文献   

11.
ABSTRACT

Thermal rate constants for chemical reactions using improved canonical variational transition state theory (ICVT) with small-curvature tunnelling (SCT) contributions in a temperature range 180–2000 K are reported. The general procedure is used with high-quality ab initio computations and semi-classical reaction probabilities along the minimum energy path (MEP). The approach is based on a vibrational adiabatic reaction path and is applied to the multiple-channel hydrogen abstraction reaction H + SiH3CH3 → products and its isotopically substituted variants. All the degrees of freedom are optimised and harmonic vibrational frequencies and zero-point energies are calculated at the MP2 level with the cc-pVTZ basis set. Single-point energies are calculated at a higher level of theory; CCSD(T)-F12a/VTZ-F12. ICVT/SCT rate constants show that the quantum tunnelling contributions at low temperatures are relatively important and the H-abstraction channel from SiH3 group of SiH3CH3 is the major pathway. The total rate constants are given by the following expression: ktot(ICVT/SCT) = 2.29 10?18 T2.42 exp(?350.9/T) cm3 molec?1 s?1. These calculated rates are in agreement with the available experiments. The ICVT/SCT method is further exploited to predict primary and secondary kinetic isotope effects, respectively).  相似文献   

12.
The UQCISD, UB3LYP, UMP2, and MRMP2 methods in conjunction with the 6-31+G**/6-311+G** and aug-cc-PVDZ basis sets are used to study the primary reaction of ozone with chlorinated ethylene derivatives: tetrachloroethylene, trichloroethylene, 1,2-trans-dichloroethylene, 1,2-cis-dichloroethylene, 1,1-dichloroethylene, and chloroethylene. The reaction is studied for both concerted and nonconcerted ozone addition. The UB3LYP DFT method in conjunction with the 6-31+G** basis set is used to examine various modes of addition of ozone to these chlorinated ethylenes by the Criegee and DeMore mechanisms. The geometry and energy of the transition states, the enthalpy and entropy, and the rate constants and ratios thereof for all the reactions are calculated. The UB3LYP method generally satisfactorily describes the two reaction pathways and, largely correctly predicts the rate constants, in agreement with the available experimental data. At the same time, this method appears to be inapplicable to modeling the interaction of ozone with 1,1-dichloroethylene. In this case, the single-determinant approximation turns out to be unsuitable, and, therefore, MCSCF methods should be used. The MRMP2 method yields reasonable values of the rate constants for the DeMore mechanism, whereas in the case of the Criegee mechanism, the MP2 method does well. The UB3LYP/6-31+G** and UQCISD/aug-cc-PVDZ methods give similar values of the ratio between the rate constants for the two pathways, a result that demonstrates the versatility of the first one.  相似文献   

13.
Atomic hydrogen is a highly reactive species of interest because of its role in a wide range of applications and technologies. Knowledge about the interactions of incident H atoms on metal surfaces is important for our understanding of many processes such as those occurring in plasma-enhanced catalysis and nuclear fusion in tokamak reactors. Herein we review some of the numerous experimental surface science studies that have focused on the interactions of H atoms that are incident on low-Miller index metal single-crystal surfaces. We briefly summarize the different incident H atom reaction mechanisms and several of the available methods to create H atoms in UHV environments before addressing the key thermodynamic and kinetic data available on metal and modified metal surfaces. Generally, H atoms are very reactive and exhibit high sticking coefficients even on metals where H2 molecules do not dissociate under UHV conditions. This reactivity is often reduced by adsorbates on the surface, which also create new reaction pathways. Abstraction of surface-bound D(H) adatoms by incident H(D) atoms often occurs by an Eley-Rideal mechanism, while a hot atom mechanism produces structural effects in the abstraction rates and forms homonuclear products. Additionally, incident H atoms can often induce surface reconstructions and populate subsurface and bulk absorption sites. The absorbed H atoms recombine to desorb H2 at lower temperature and can also exhibit higher subsequent reactivity with adsorbates than surface-bound H adatoms. Incident H atoms, either directly or via sorbed hydrogen species, hydrogenate adsorbed hydrocarbons, sulfur, alkali metals, oxygen, halogens, and other adatoms and small molecules. Thus, H atoms from the gas phase incident on surfaces and adsorbed layers create new reaction channels and products beyond those found from interactions of H2 molecules. Detailed aspects of the dynamics and energy transfer associated with these interactions and the important applications of hydrogen in plasma processing of semiconductors are beyond the scope of this review.  相似文献   

14.
15.
The concurrent generation of CF2 and of H atoms upon exposure of samples containing CF2N2 and either HI or H2S isolated in an argon or a nitrogen matrix at 14 K to 2537-Å mercury-arc radiation leads to the appearance of prominent infrared absorptions of HCF2, demonstrating that this species is the primary product of the H + CF2 reaction. Infrared absorptions assigned to HCF2, DCF2, CF2I, and CF2S in previous studies on other reaction systems are confirmed in the experimental studies here reported.  相似文献   

16.
In this study, efficient degradation of sulfamethoxazole (SMX) with a high synergy factor of 14.7 was demonstrated in a sonoelectrochemical (US-EC) system adopting common Pt and graphite electrodes. It was found that the US-EC system could work effectively at broad pH range of 3–9, but would achieve good performances with appropriate electrochemical conditions at 20 mA/cm2 and 0.1 M Na2SO4. Both OH attacking and the anode oxidation would be responsible for the SMX degradation in the US-EC system, while the multiple promotional roles of US would be played homogenously and heterogeneously. US could not only effectively accelerate the decomposition of cathode-generated H2O2 into OH, but also lead to the enhancement in the heterogeneous reactions on the two electrodes, i.e. the cathode generation of H2O2 as well as the anode oxidation of SMX and H2O/OH. Besides, the US-EC system would decompose SMX molecule via similar and simple pathways, by using either Na2SO4 or NaCl electrolytes. It was interesting to note that the US-EC system could successfully avoid the formation of complex chlorinated byproducts that detected in the referring EC system with NaCl. This finding would make the sonoelectrochemical processes favorable in treating practical wastewaters by alleviating the environmental impact of disinfection byproducts.  相似文献   

17.
It is proved that the groupG=SU(n) has a decompositionG=FCF whereF is a maximal abelian subgroup andC is an (n − 1)2 parameter subset of matrices. The result is applied to the problem of absorbing the maximum possible number of phases in the mass-diagonalising matrix of the charged weak current into the quark fields; i.e., of determining the exact number of CP-violating phases for arbitrary number of generations. The inadequacies of the usual way of solving this problem are discussed. Then=3 case is worked out in detail as an example of the constructive procedure furnished by the proof of the decomposition theorem.  相似文献   

18.
Image encryption is an efficient technique of image content protection. In this work, we propose a useful image encryption algorithm for multiple grayscale images. The proposed algorithm decomposes input images into bit-planes, randomly swaps bit-blocks among different bit-planes, and conducts XOR operation between the scrambled images and secret matrix controlled by chaotic map. Finally, an encrypted PNG image is obtained by viewing four scrambled grayscale images as its red, green, blue and alpha components. Many simulations are done to illustrate efficiency of our algorithm.  相似文献   

19.
The kinetics for the reactions of C6H5 with phenylacetylene and styrene have been measured by CRDS in the temperature range 297-409 K under an Ar pressure of 3.6 Torr. The total rate constants can be given by the following Arrhenius expressions (in units of cm3 mol−1 s−1): k1(C6H5 + C6H5C2H) = 1013.0±0.1exp [−(2430 ± 150)/RT] and k2(C6H5 + C6H5C2H3) = 1013.3±0.1 exp [−(2570 ± 180)/T]. Additional DFT and MP2 calculations have been carried out to assist our interpretation of the measured kinetic data. The addition of C6H5 to the terminal CHx (x = 1 or 2) sites is predicted to be the dominant channel for both reactions. The calculated bimolecular rate constants are in reasonable agreement with experimental values for the temperature range studied.  相似文献   

20.
Combining polarizing-filtered planar laser-induced fluorescence (PLIF) with simultaneous laser absorption, quantitative laser-induced breakdown spectroscopy (LIBS) and two-color pyrometry, the potassium release during the combustion of biomass fuels (corn straw and poplar) has been investigated. The temporal release profiles of volatile atomic potassium and potassium compounds from a corn straw show a single peak. The woody biomass, poplar, produces a dual-maxima distribution for potassium and potassium compounds. For both biomass samples, the highest concentrations of released atomic potassium and potassium compounds occur in the devolatilization stage. The mass ratios between volatile atomic potassium and potassium compounds in the corn straw and poplar cases are 0.77% and 0.79%, respectively. These values agree well with chemical equilibrium predictions that 0.68% of total potassium will be in atomic form. A two-step kinetic model of potassium release has been developed, which gives better predictions during the devolatilization stage than the existing single-step model. Finally, a map of potassium transformation processes during combustion is developed. Starting with inorganic and organic potassium, there are eight proposed transformation pathways including five proposed release pathways that occur during the combustion. The pathways describe the transformation of potassium between the fuel volatile matter, char, and ash. Potassium release during the devolatilization stage is due to pyrolysis and evaporation; during the char burnout stage, potassium release is due to char oxidation and decomposition; and during the ash cooking stage, potassium release is caused by reactions between the ash and H2O in the co-flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号